Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (6): 1111-1119    DOI: 10.3785/j.issn.1008-973X.2023.06.006
土木工程、水利工程     
短期风浪波高周期联合分布研究
马永亮1(),高志扬1,韩超帅2,左青锋1,陆国庆1
1. 重庆交通大学 航运与船舶工程学院,重庆 400074
2. 江苏科技大学 船舶与海洋工程学院 江苏 镇江 212100
Joint distribution of wave height and period for short-term wind seas
Yong-liang MA1(),Zhi-yang GAO1,Chao-shuai HAN2,Qing-feng ZUO1,Guo-qing LU1
1. School of Shipping and Naval Architecture, Chongqing Jiaotong University, Chongqing 400074, China
2. School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
 全文: PDF(1626 KB)   HTML
摘要:

为了准确描述短期风浪波高周期的联合分布,采用条件概率方法提出新的联合分布模型,并给出新的波高周期联合概率密度函数表达式. 该表达式仅包含有义波高、平均跨零周期2个参数, 便于工程应用. 以Pierson-Moscowitz (P-M)谱、布氏谱以及实测波浪谱为靶谱,采用余弦波叠加方法模拟短期波浪,统计分析得到波高周期的经验联合分布. 以经验联合分布为基准,对提出的联合分布模型以及现有文献中5种联合分布模型进行对比分析. 采用均方根误差评价所有模型与经验分布的匹配程度. 均方根误差结果表明,在所有模型中所提模型与经验分布最接近. 模型之间的差异,主要体现在周期分布上. 在所有模型中,所提模型导出的周期分布与经验分布最接近. 所提模型采用显式闭合公式表示,可采用Hermite变换、Rychlic变换,将该模型推广到非高斯波浪情况.

关键词: 波浪谱单个波周期分布波高周期联合分布短期海况    
Abstract:

A new joint distribution model was proposed by using the conditional probability method, and a new expression for the joint probability density function of wave height period was given, in order to accurately describe the joint distribution of wave high and period for short-term wind seas. Only two parameters were contained in the expression, the significant wave height and the mean cross zero period, which facilitated engineering applications. Taking the Pierson-Moscowitz (P-M) spectrum, the Bretschneider spectrum and the measured wave spectrum as the target spectrum, the short-term irregular waves were modelled as a sum of cosinoidal wave components. An empirical distribution of wave high and period was obtained through statistical analysis. The empirical joint distribution was used as the benchmark, and the proposed joint distribution models and five joint distribution models in the existing literature were compared and analyzed. The root-mean-square error was used to evaluate the degree of matching between all models and the empirical distribution. The results of the root-mean-square error indicate that the proposed model is closest to the empirical distribution in the all models. The difference between the models is mainly reflected in the distribution of period. Among all the models, the distribution of period derived from the proposed model is also closest to the empirical distribution. The proposed joint distribution is expressed by an explicit closed-form formula, it can be easily extended to non-Gaussian wave cases according to transform Gaussian methods such as Hermite transform and Rychlic transform.

Key words: wave spectrum    individual wave    distribution of period    joint distribution of wave height and period    short-term wind condition
收稿日期: 2022-11-09 出版日期: 2023-06-30
CLC:  P 751  
基金资助: 国家自然科学基金资助项目(52001144);重庆市基础研究与前沿探索专项(自然科学基金)面上项目(cstc2019jcyj-msxmX0619);重庆市教育委员会科学技术研究项目(KJQN201900743)
作者简介: 马永亮(1983—),男,副教授,从事船舶与海洋结构物力学性能研究. orcid.org/0000-0001-9940-7641.E-mail: mayongliang@hrbeu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
马永亮
高志扬
韩超帅
左青锋
陆国庆

引用本文:

马永亮,高志扬,韩超帅,左青锋,陆国庆. 短期风浪波高周期联合分布研究[J]. 浙江大学学报(工学版), 2023, 57(6): 1111-1119.

Yong-liang MA,Zhi-yang GAO,Chao-shuai HAN,Qing-feng ZUO,Guo-qing LU. Joint distribution of wave height and period for short-term wind seas. Journal of ZheJiang University (Engineering Science), 2023, 57(6): 1111-1119.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.06.006        https://www.zjujournals.com/eng/CN/Y2023/V57/I6/1111

图 1  基于波浪谱的波高周期联合概率密度函数仿真流程图
图 2  各模型均方根误差比较(P-M谱)
模型 RMSE
${H_{{\rm{s}}} }$=0.5 m ${H_{{\rm{s}}} }$=3 m ${H_{{\rm{s}}} }$=8 m ${H_{{\rm{s}}} }$=14 m
CNEXO 0.368 3 0.025 1 0.005 8 0.002 5
L-H 1983 0.222 5 0.015 1 0.003 5 0.001 5
孙孚 0.219 6 0.014 9 0.003 4 0.001 5
L-H 1983-Zheng 0.249 9 0.017 0 0.003 9 0.001 7
孙孚-Zheng 0.251 6 0.017 1 0.003 9 0.001 7
本研究 0.157 0 0.012 1 0.003 0 0.001 3
表 1  各模型均方根误差数值(P-M谱)
图 3  P-M谱仿真经验联合分布与各理论模型联合分布的比较(概率密度数值由外向内依次为0.001、0.010、0.030、0.060)
图 4  P-M谱仿真的周期概率分布与各模型的周期分布比较
模型 RMSE
${T_{ {\rm{p} } } }$=3 s ${T_{{\rm{p}}} }$=6 s ${T_{{\rm{p}}} }$=9 s ${T_{{\rm{p}}} }$=12 s
CNEXO 0.072 3 0.036 2 0.024 1 0.018 1
L-H 1983 0.043 4 0.021 7 0.014 5 0.010 8
孙孚 0.042 8 0.021 4 0.014 3 0.010 7
L-H 1983-Zheng 0.048 6 0.024 3 0.016 2 0.012 2
孙孚-Zheng 0.049 0 0.024 5 0.016 3 0.012 2
本研究 0.029 6 0.016 4 0.011 6 0.009 0
表 3  各模型的均方根误差数值(布氏谱Hs=6 m)
图 5  各模型的均方根误差比较 (布氏谱)
模型 RMSE
${T_{{\rm{p}}} }$=0.5 s ${T_{{\rm{p}}} }$=3.5 s ${T_{{\rm{p}}} }$=7.5 s ${T_{{\rm{p}}} }$=12.5 s
CNEXO 2.630 5 0.375 8 0.175 4 0.105 2
L-H 1983 1.588 7 0.227 0 0.105 9 0.063 6
孙孚 1.567 7 0.224 0 0.104 5 0.062 7
L-H 1983-Zheng 1.784 6 0.254 9 0.119 0 0.071 4
孙孚-Zheng 1.796 8 0.256 7 0.119 8 0.071 9
本研究 0.834 5 0.162 4 0.084 5 0.054 3
表 2  各模型的均方根误差数值(布氏谱Hs=0.5 m)
模型 RMSE
${T_{{\rm{p}}} }$=5 s ${T_{{\rm{p}}} }$=9 s ${T_{{\rm{p}}} }$=13 s ${T_{{\rm{p}}} }$=17 s
CNEXO 0.013 0 0.007 2 0.005 0 0.003 8
L-H 1983 0.007 8 0.004 3 0.003 0 0.002 3
孙孚 0.007 7 0.004 3 0.003 0 0.002 3
L-H 1983-Zheng 0.008 7 0.004 9 0.003 4 0.002 6
孙孚-Zheng 0.008 8 0.004 9 0.003 4 0.002 6
本研究 0.005 8 0.003 5 0.002 5 0.002 0
表 4  各模型的均方根误差数值(布氏谱Hs=10 m)
图 6  浮标站的实测波浪谱数据
模型 RMSE44066 RMSE42098
18:00 22:00 7:00 8:00
CNEXO 0.044 9 0.032 5 0.087 9 0.073 6
L-H 1983 0.040 5 0.030 9 0.070 2 0.059 1
孙孚 0.040 4 0.030 6 0.070 0 0.058 8
L-H 1983-Zheng 0.032 5 0.027 2 0.073 0 0.059 2
孙孚-Zheng 0.035 3 0.026 6 0.074 2 0.060 6
本研究 0.031 1 0.026 8 0.049 1 0.047 8
表 5  各模型的均方根误差数值(实测谱)
图 7  44066站实测波浪谱(18:00) 仿真经验联合分布与各模型联合分布的比较(概率密度数值由外向内依次为0.01、0.10、0.17、0.25)
图 8  44066站实测波浪谱(18:00)仿真的周期概率密度分布与各模型的周期分布比较
1 OCHI M K. Ocean wave the stochastic approach [M]. Cambridge: Cambridge university press, 1998.
2 ABS. Guide for the fatigue assessment of offshore structures [S]. Houston: American Bureau of Shipping, 2003.
3 LONGUET-HIGGINS M S On the joint distribution of the periods and amplitudes of sea waves[J]. Journal of Geophysics Research, 1975, 80 (18): 2688- 2694
doi: 10.1029/JC080i018p02688
4 GODA Y. Random Seas and Design of Maritime Structures [M]. London: World Scientific Publishing Co Pte Lts, 2000.
5 LONGUET-HIGGINS M S On the joint distribution of wave periods and amplitudes in a random wave field[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1983, 389: 241- 258
6 孙孚 海浪周期与波高的联合分布[J]. 海洋学报, 1988, 10 (1): 10- 15
SUN Fu Joint distribution of wave period and wave height[J]. Acta Oceanologica Sinica, 1988, 10 (1): 10- 15
7 ZHENG G Z, JIANG X L, HAN S Z The difference between the joint probability distributions of apparent wave heights and periods and individual wave heights and periods[J]. Acta Oceanologica Sinica, 2004, 23 (3): 399- 406
8 CAVANIÉ A, ARHAN M, EZRATY R. A statistical relationship between individual heights and periods of storm waves [C]// Behavior of Offshore Structures (BOSS’76). Trondheim: [s.n.], 1976, 354: 235-244.
9 EZRATY R, LAURENT M, ARHAN M. Comparison with observation at sea of period or height dependent sea state parameters from a theoretical model [C]// The Ninth Annual of Offshore Technology Conference. Houston: [s.n.], 1977: 149-154.
10 潘锦嫦, 陈志宏 海浪波高与周期联合概率密度分布的研究[J]. 海洋通报, 1996, 15 (3): 1- 13
PAN Jin-chang, CHEN Zhi-hong Study of the joint probability density distribution of wave heights and periods[J]. Marine Science Bulletin, 1996, 15 (3): 1- 13
11 黄必桂, 金嘉萌, 胡琴, 等 基于实测资料的南海海浪波高和周期联合分布研究[J]. 海洋工程装备与技术, 2017, 4 (4): 187- 192
HUANG Bi-gui, JIN Jia-meng, HU Qin, et al Study on the joint distribution of wave heights and periods in the south China sea based on observed data[J]. Ocean Engineering Equipment and Technology, 2017, 4 (4): 187- 192
12 戴仰山, 沈进威, 宋竞正. 船舶波浪载荷[M]. 北京: 国防工业出版社, 2007.
13 DNV. Environmental conditions and environmental loads: DNV-RP-C205 [S]. [S.l.]: DNV, 2021.
14 IACS. No. 34, Standard wave data [S]. [S.l.]: IACS, 2000.
15 俞聿修. 随机波浪及其工程应用[M]. 大连: 大连理工大学出版社, 2003.
16 HUDSPETH R T, BORGMAN L E Efficient FFT simulations of digital time sequences[J]. Journal of the Engineering Mechanics Division, 1979, 105 (2): 223- 235
doi: 10.1061/JMCEA3.0002463
17 LUTES L D, SARKANI S. Random vibrations analysis of structural and mechanical systems [M]. London: Elsevier Butterworth-Heinemann, 2004.
18 SONG X, JIA Y, WANG S, et al A modified straightforward spectral representation method for accurate and efficient simulation of the stationary non-Gaussian stochastic wave[J]. Ocean Engineering, 2020, 205: 107308
doi: 10.1016/j.oceaneng.2020.107308
19 RYCHLIK I, JOHANNESSON P, LEADBETTER M R Modelling and statistical analysis of ocean-wave data using transformed Gaussian processes[J]. Marine Structures, 1997, 10 (1): 13- 47
doi: 10.1016/S0951-8339(96)00017-2
[1] 张云佐,郭威,蔡昭权,李文博. 联合多尺度与注意力机制的遥感图像目标检测[J]. 浙江大学学报(工学版), 2022, 56(11): 2215-2223.
[2] 蒋昊,徐海松. 基于直方图与图像分块融合的阶调映射算法[J]. 浙江大学学报(工学版), 2022, 56(11): 2224-2231.
[3] 李凯,林宇舜,吴晓琳,廖飞宇. 基于多尺度融合与注意力机制的小目标车辆检测[J]. 浙江大学学报(工学版), 2022, 56(11): 2241-2250.
[4] 葛勇强,曹晨,陈家旺,徐春莺,周朋,高峰,梁涛,方玉平. 基于MEMS传感阵列的海底地形形变原位监测装置[J]. 浙江大学学报(工学版), 2022, 56(9): 1732-1739.
[5] 吴泽康,赵姗,李宏伟,姜懿芮. 遥感图像语义分割空间全局上下文信息网络[J]. 浙江大学学报(工学版), 2022, 56(4): 795-802.
[6] 陈雪云,黄金汉,胡子灿,岑升才. 基于线性逻辑矢量模式的遥感图像目标检测[J]. 浙江大学学报(工学版), 2022, 56(1): 47-55.
[7] 沈佳轶,库猛,王立忠. 基于剪切带扩展法的海底斜坡稳定性分析[J]. 浙江大学学报(工学版), 2021, 55(7): 1299-1307.
[8] 余煇,柴登峰. 基于长方形点过程的遥感图像汽车提取[J]. 浙江大学学报(工学版), 2019, 53(9): 1741-1748.
[9] 周文杰,王立忠,汤旅军,国振,芮圣洁,黄玉佩. 导管架基础海上风机动力响应数值分析[J]. 浙江大学学报(工学版), 2019, 53(8): 1431-1437.
[10] 赫贵然,李奇,冯华君,徐之海,陈跃庭. 基于CNN特征提取的双焦相机连续数字变焦[J]. 浙江大学学报(工学版), 2019, 53(6): 1182-1189.
[11] 赖小波,张学群,许茂盛. 胶质母细胞瘤多模态磁共振图像自动分割[J]. 浙江大学学报(工学版), 2019, 53(2): 355-363.
[12] 唐燕玲,徐卢笛,贺治国,陈葆德,徐杰,李莉. 洋山海域三维潮流和余流特征的数值模拟[J]. 浙江大学学报(工学版), 2019, 53(2): 315-324.
[13] 姜波, 解仑, 刘欣, 韩晶, 王志良. 光流模值估计的微表情捕捉[J]. 浙江大学学报(工学版), 2017, 51(3): 577-583.
[14] 张建廷,张立民. 新型自适应稳健双边滤波图像分割[J]. 浙江大学学报(工学版), 2016, 50(9): 1703-1710.
[15] 文奴,杨世植,崔生成. 基于Curvelet-Wavelet变换高分辨率遥感图像降噪[J]. 浙江大学学报(工学版), 2015, 49(1): 79-86.