Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (6): 1100-1110    DOI: 10.3785/j.issn.1008-973X.2023.06.005
土木工程、水利工程     
基于菌促方法和酶促方法的黄河泥沙加固参数试验研究
王钰轲1(),曹天才1,宋迎宾2,*(),邵景干3,余翔1,董博文4
1. 郑州大学 水利科学与工程学院,河南 郑州,450001
2. 黄河水利委员会 黄河水利科学研究院,河南 郑州,450003
3. 河南交院工程技术集团有限公司,河南 郑州,451460
4. 河南省交通规划设计研究院股份有限公司,河南 郑州,451450
Experimental study on solidification parameters of Yellow River silt based on bacteria-induced and enzyme-induced methods
Yu-ke WANG1(),Tian-cai CAO1,Ying-bin SONG2,*(),Jing-gan SHAO3,Xiang YU1,Bo-wen DONG4
1. College of Water Conservancy Engineering, Zhengzhou University, Zhengzhou 450001, China
2. Yellow River Institute of Hydraulic Research, Yellow River Conservancy Commission, Zhengzhou 450003, China
3. Henan Jiaoyuan Engineering Technology Limited Company, Zhengzhou 451460, China
4. Henan Communications Planning and Design Institute Limited Company, Zhengzhou 451450, China
 全文: PDF(6934 KB)   HTML
摘要:

为了改善黄河泥沙的质量和推广其在路基工程中的应用,基于新兴的生物矿化技术,考虑胶结液浓度和灌浆次数,采用无侧限抗压强度(UCS)试验、碳酸钙质量分数测试、扫描电镜(SEM)等方式,对比分析微生物诱导碳酸钙沉积(MICP)与酶诱导碳酸钙沉积(EICP)技术固化黄河泥沙试样的效果. 试验结果表明:大豆粉质量浓度为40 g/L时,大豆脲酶的提取效率最优;培养基溶液pH=8时,细菌和大豆脲酶的活性最好;生物酶和胶结液的体积比为1∶1时,尿素能够与氯化钙充分反应. 增加胶结液浓度、灌浆次数均能够提高黄河泥沙试样的抗压强度,但两者的影响规律不同,胶结液浓度起主导作用. 当胶结液浓度为1 mol/L、灌浆次数为8次时,EICP、MICP技术固化后试样的抗压强度达到最大,分别为954.65、674.98 kPa. 黄河泥沙试样内部生成的碳酸钙和抗压强度呈线性关系,EICP、MICP技术固化后试样的碳酸钙质量分数最大值分别为24.05%、21.35%. 黄河泥沙颗粒表面和颗粒之间的孔隙中均有方解石型碳酸钙附着,但其质量分数在试样内部自上而下逐渐降低. 宏观、微观的角度分析结果均表明,EICP技术相比MICP技术更加适合固化黄河泥沙.

关键词: 黄河泥沙微生物诱导碳酸钙沉积(MICP)酶诱导碳酸钙沉积(EICP)抗压强度碳酸钙    
Abstract:

In order to improve the quality of the Yellow River silt and popularize its application in subgrade engineering, the effects of microbially induced carbonate precipitation (MICP) and enzyme-induced carbonate precipitation (EICP) technology on the solidification of the Yellow River silt were compared and analyzed, based on the emerging biomineralization technology, considering the cement solution concentration and grouting times, using the unconfined compressive strength (UCS) test, mass fraction test of calcium carbonate and scanning electron microscope (SEM). Test results showed that the extraction efficiency of soybean urease was optimal when the mass concentration of soybean flour was 40 g/L. The highest activity of bacteria and soybean urease was obtained when the pH of the medium solution was 8. With a volume ratio of 1∶1 between the biological enzyme and the caking solution, urea reacted sufficiently with calcium chloride. The compressive strength of the Yellow River silt samples can be improved by increasing the cement solution concentration and the grouting times, but the influences of the two are different, and the cement solution concentration plays a leading role. The maximum compressive strength of the specimens cured by the EICP and MICP technology was 954.65 kPa and 674.98 kPa respectively, at the cement solution concentration of 1 mol/L and the grouting times of 8. The calcium carbonate generated in the Yellow River silt sample has a linear relationship with the compressive strength. The maximum mass fraction of calcium carbonate in the sample cured by EICP and MICP technology was 24.05% and 21.35% respectively. Calcite calcium carbonate is attached to the surface of the Yellow River silt particles and the pores between the particles, and the mass fraction of the calcium carbonate gradually decreases from top to bottom in the sample. Analysis of macroscopic and microscopic views indicates that the EICP is more suitable for solidifying the Yellow River silt than the MICP.

Key words: Yellow River silt    microbially induced carbonate precipitation (MICP)    enzyme-induced carbonate precipitation (EICP)    compressive strength    calcium carbonate
收稿日期: 2022-07-16 出版日期: 2023-06-30
CLC:  TU 411  
基金资助: 国家自然科学基金资助项目(52178369,52109140,U2243222);河南省自然科学基金资助项目 (202300410424)
通讯作者: 宋迎宾     E-mail: ykewang@163.com;2314231473@qq.com
作者简介: 王钰轲(1989—),男,教授,博导,从事土体静动力学特性与本构模拟研究. orcid.org/0000-0003-1849-4857.E-mail: ykewang@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
王钰轲
曹天才
宋迎宾
邵景干
余翔
董博文

引用本文:

王钰轲,曹天才,宋迎宾,邵景干,余翔,董博文. 基于菌促方法和酶促方法的黄河泥沙加固参数试验研究[J]. 浙江大学学报(工学版), 2023, 57(6): 1100-1110.

Yu-ke WANG,Tian-cai CAO,Ying-bin SONG,Jing-gan SHAO,Xiang YU,Bo-wen DONG. Experimental study on solidification parameters of Yellow River silt based on bacteria-induced and enzyme-induced methods. Journal of ZheJiang University (Engineering Science), 2023, 57(6): 1100-1110.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.06.005        https://www.zjujournals.com/eng/CN/Y2023/V57/I6/1100

图 1  黄河泥沙的颗粒级配曲线
图 2  大豆脲酶溶液
图 3  大豆脲酶活性测试
图 4  活性良好的细菌溶液
图 5  制备好的黄河泥沙试样
图 6  黄河泥沙试样的灌浆过程
试验编号 处理方式 cc/(mol·L?1 Dr/%
N=2 N=4 N=6 N=8
TU-1 TU-2 TU-3 TU-4 EICP 0.25 40
TU-5 TU-6 TU-7 TU-8 0.50
TU-9 TU-10 TU-11 TU-12 0.75
TU-13 TU-14 TU-15 TU-16 1.00
TB-1 TB-2 TB-3 TB-4 MICP 0.25 40
TB-5 TB-6 TB-7 TB-8 0.50
TB-9 TB-10 TB-11 TB-12 0.75
TB-13 TB-14 TB-15 TB-16 1.00
表 1  黄河泥沙固化试验方案
图 7  酸洗和水洗固化后的黄河泥沙
图 8  大豆脲酶的活性变化曲线
图 9  pH对生物酶活性的影响规律
图 10  2种固化技术处理后的黄河泥沙试样
图 11  2种固化技术处理后的试样在不同灌浆次数条件下,抗压强度随胶结液浓度的变化
图 12  2种固化技术处理后的试样在不同胶结液浓度条件下,抗压强度随灌浆次数的变化
图 13  2种固化黄河泥沙试样的抗压强度三维图
图 14  黄河泥沙试样的应力-应变曲线
图 15  黄河泥沙试样的破坏情况
图 16  EICP固化试样的碳酸钙质量分数三维图
图 17  2种固化方式下试样中的碳酸钙质量分数
图 18  EICP固化后试样的碳酸钙质量分数与抗压强度的关系
图 19  黄河泥沙试样SEM图像
1 赵然杭, 华丽丽, 刘恒洋, 等 黄河泥沙用于高速公路路基填筑的可行性研究[J]. 人民黄河, 2021, 43 (2): 122- 126
ZHAO Ran-hang, HUA Li-li, LIU Heng-yang, et al Feasibility study on Yellow River sediment used in subgrade filling of expressway[J]. Yellow River, 2021, 43 (2): 122- 126
doi: 10.3969/j.issn.1000-1379.2021.02.025
2 江恩慧, 曹永涛, 董其华, 等 黄河泥沙资源利用的长远效应[J]. 人民黄河, 2015, 37 (2): 1- 5
JIANG En-hui, CAO Yong-tao, DONG Qi-hua, et al Long-term effects of the Yellow River sediment resources utilization[J]. Yellow River, 2015, 37 (2): 1- 5
doi: 10.3969/j.issn.1000-1379.2015.02.001
3 岳瑜素, 汪自力, 谢志刚 黄河泥沙资源转型利用产业化相关政策探讨[J]. 中国水利, 2016, (18): 49- 50
YUE Yu-su, WANG Zi-li, XIE Zhi-gang Industrialization policies for utilization of sediment resources of Yellow River[J]. China Water Resources, 2016, (18): 49- 50
doi: 10.3969/j.issn.1000-1123.2016.18.019
4 WANG Y, CAO T, SHAO J, et al Experimental study on static characteristics of the Yellow River silt under (triaxial) consolidated undrained conditions[J]. Marine Georesources and Geotechnology, 2022, 41 (3): 285- 294
5 王钰轲, 李俊豪, 邵景干, 等 不同影响因素下路用黄河泥沙动剪切模量和阻尼比试验及理论模型研究[J]. 工程科学学报, 2023, 45 (3): 509- 519
WANG Yu-ke, LI Jun-hao, SHAO Jing-gan, et al Experimental investigation and theoretical models on dynamic shear moduli and damping rations for Yellow River sediment under different influence factors[J]. Chinese Journal of Engineering, 2023, 45 (3): 509- 519
6 WANG Y, CAO T, GAO Y, et al Experimental study on liquefaction characteristics of saturated Yellow River silt under cycles loading[J]. Soil Dynamics and Earthquake Engineering, 2022, 163: 107457
doi: 10.1016/j.soildyn.2022.107457
7 刘俊霞, 张磊, 杨久俊, 等 磷酸对黄河泥沙石灰土的激活效果及作用机理[J]. 建筑材料学报, 2013, 16 (5): 898- 902
LIU Jun-xia, ZHANG Lei, YANG Jiu-jun, et al Activation effect and mechanism of phosphoric acid on Yellow River sediment limes soil[J]. Journal of Building Materials, 2013, 16 (5): 898- 902
doi: 10.3969/j.issn.1007-9629.2013.05.028
8 刘汉龙, 肖鹏, 肖杨, 等 微生物岩土技术及其应用研究新进展[J]. 土木与环境工程学报(中英文), 2019, 41 (1): 1- 14
LIU Han-long, XIAO Peng, XIAO Yang, et al State-of-the-art review of biogeotechnology and its engineering applications[J]. Journal of Civil Environmental Engineering, 2019, 41 (1): 1- 14
9 MORTENSEN B M, DEJONG J T. Strength and stiffness of MICP treated sand subjected to various stress paths [C]// Geo-Frontiers. Dallas: [s.n.], 2011: 4012-4020.
10 HAMDAN N, KAVAZANJIAN E Enzyme-induced carbonate mineral precipitation for fugitive dust control[J]. Géotechnique, 2016, 66 (7): 546- 555
11 HARKES M P, VAN PAASSEN L A, BOOSTER J L, et al Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement[J]. Ecological Engineering, 2010, 36 (2): 112- 117
doi: 10.1016/j.ecoleng.2009.01.004
12 PUTRA H, YASUHARA H, KIONSHITA N, et al Effect of magnesium as substitute material in enzyme-mediated calcite precipitation for soil-improvement technique[J]. Frontiers in Bioengineering and Biotechnology, 2016, 4: 37
13 PARK S S, CHOI S G, NAM I H Effect of plant-induced calcite precipitation on the strength of sand[J]. Journal of Materials in Civil Engineering, 2014, 26 (8): 06014017
doi: 10.1061/(ASCE)MT.1943-5533.0001029
14 DEJONG J T, MORTENSEN B M, MARTINEZ B C, et al Bio-mediated soil improvement[J]. Ecological Engineering, 2008, 36 (2): 197- 210
15 DE MUYNCK W, DE BELIE N, VERSTRAETE W Microbial carbonate precipitation in construction materials: a review[J]. Ecological Engineering, 2010, 36 (2): 118- 136
doi: 10.1016/j.ecoleng.2009.02.006
16 WHIFFIN V S. Microbial CaCO3 precipitation for the production of biocement [D]. Perth: Murdoch University, 2004.
17 SIDDIQUE R, NANDA V, KUNAL, et al Influence of bacteria on compressive strength and permeation properties of concrete made with cement baghouse filter dust[J]. Construction and Building Materials, 2016, 106: 461- 469
doi: 10.1016/j.conbuildmat.2015.12.112
18 SHARMA A, RAMKRISHNAN R Study on effect of microbial induced calcite precipitates on strength of fine grained soils[J]. Perspectives in Science, 2016, 8: 198- 202
doi: 10.1016/j.pisc.2016.03.017
19 CHOI S, WANG K, CHU J Properties of biocemented, fiber reinforced sand[J]. Construction and Building Materials, 2016, 120: 623- 629
doi: 10.1016/j.conbuildmat.2016.05.124
20 BALAM N H, MOSTOFINEJAD D, EFTEKHAR M Use of carbonate precipitating bacteria to reduce water absorption of aggregates[J]. Construction and Building Materials, 2017, 141: 565- 577
doi: 10.1016/j.conbuildmat.2017.03.042
21 CHU J, IVANOV V, NAEIMI M, et al Optimization of calcium-based bioclogging and biocementation of sand[J]. Acta Geotechnica, 2014, 9: 277- 285
doi: 10.1007/s11440-013-0278-8
22 TERZIS D, LALOUI L 3-D micro-architecture and mechanical response of soil cemented via microbial-induced calcite precipitation[J]. Scientific Reports, 2018, 8: 1416
doi: 10.1038/s41598-018-19895-w
23 CHENG L, SHAHIN M A, MUJAH D Influence of key environmental conditions on microbially induced cementation for soil stabilization[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2017, 143 (1): 04016083
doi: 10.1061/(ASCE)GT.1943-5606.0001586
24 FENG K, MONTOYA B M Influence of confinement and cementation level on the behavior of microbial-induced calcite precipitated sands under monotonic drained loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142 (1): 04015057
doi: 10.1061/(ASCE)GT.1943-5606.0001379
25 KHODADADI T H, KAVAZANJIAN E, VAN PAASSEN L, et al. Bio-grout materials: a review [C]// Grouting 2017. Honolulu: [s.n.], 2017: 1-12.
26 WANG Y, WANG G, ZHONG Y, et al Comparison of different treatment methods on macro-micro characteristics of Yellow River silt solidified by MICP technology[J]. Marine Georesources and Geotechnology, 2022, 41 (4): 425- 435
27 WHIFFIN V S, VAN PAASSEN L A, HARKES M P Microbial carbonate precipitation as a soil improvement technique[J]. Geomicrobiology Journal, 2007, 24 (5): 417- 423
doi: 10.1080/01490450701436505
28 CHENG L, CORD-RUWISCH R In situ soil cementation with ureolytic bacteria by surface percolation[J]. Ecological Engineering, 2012, 42: 64- 72
doi: 10.1016/j.ecoleng.2012.01.013
29 DILRUKSHI N, WATANABE J, KAWASAKI S Sand cementation test using plant-derived urease and calcium phosphate compound[J]. Materials Transactions, 2015, 56 (9): 1565- 1572
doi: 10.2320/matertrans.M-M2015818
30 ALMAJED A A. Enzyme induced carbonate precipitation (EICP) for soil improvement [D]. Phoenix: Arizona State University, 2017.
31 HAMDAN N, KAVAZANJIAN E, O’DONNELL S. Carbonate cementation via plant derived urease [C]// Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering. Paris: [s.n.], 2013: 2489–2492.
32 原华, 刘康, 原耀楠, 等 大豆脲酶诱导碳酸钙沉淀的多因素影响分析[J]. 人工晶体学报, 2021, 50 (2): 375- 380
YUAN Hua, LIU Kang, YUAN Yan-nan, et al Affecting analysis of multi-factors on soybean urease-induced calcium carbonate precipitation[J]. Journal of Synthetic Crystals, 2021, 50 (2): 375- 380
doi: 10.3969/j.issn.1000-985X.2021.02.022
33 吴林玉, 缪林昌, 孙潇昊, 等 植物源脲酶诱导碳酸钙固化沙土试验研究[J]. 岩土工程学报, 2020, 42 (4): 714- 720
WU Lin-yu, MIAO Lin-chang, SUN Xiao-hao, et al Experimental study on sand solidification using plant-derived urease-induced calcium carbonate precipitation[J]. Chinese Journal of Geotechnical Engineering, 2020, 42 (4): 714- 720
34 GAO Y F, MENG H, HE J, et al Field trial on use of soybean crude extract for carbonate precipitation and wind erosion control of sandy soil[J]. Journal of Central South University, 2020, 27: 3320- 3333
doi: 10.1007/s11771-020-4549-x
35 CHEN Y, GAO Y, NG C W W, et al Bio-improved hydraulic properties of sand treated by soybean urease induced carbonate precipitation and its application part 1: water retention ability[J]. Transportation Geotechnics, 2021, 27: 100489
doi: 10.1016/j.trgeo.2020.100489
36 WANG Y, WANG G, WAN Y, et al Recycling of dredged river silt reinforced by an eco-friendly technology as microbial induced calcium carbonate precipitation (MICP)[J]. Soils and Foundations, 2022, 62 (6): 101216
doi: 10.1016/j.sandf.2022.101216
37 KAVAZANJIAN E, HAMDAN N. Enzyme induced carbonate precipitation (EICP) columns for ground improvement [C]// IFCEE 2015. San Antonio: ASCE, 2015: 2252–2261.
[1] 李艺隆,国振,徐强,李雨杰. 海水环境下MICP胶结钙质砂干湿循环试验研究[J]. 浙江大学学报(工学版), 2022, 56(9): 1740-1749.
[2] 田威,高芳芳,贺礼. 高温后碳纳米管混凝土力学性能及细观结构变化[J]. 浙江大学学报(工学版), 2022, 56(11): 2280-2289.
[3] 葛培,黄炜,李萌. 再生砖骨料混凝土架构模型试验研究[J]. 浙江大学学报(工学版), 2021, 55(1): 10-19.
[4] 刘志明,彭劼,李杰,宋恩润. 超声波提高微生物固化砂土效果的试验研究[J]. 浙江大学学报(工学版), 2020, 54(7): 1411-1417.
[5] 谢约翰,唐朝生,刘博,程青,尹黎阳,蒋宁俊,施斌. 基于微生物诱导碳酸钙沉积技术的黏性土水稳性改良[J]. 浙江大学学报(工学版), 2019, 53(8): 1438-1447.
[6] 朱剑锋,庹秋水,邓温妮,饶春义,刘浩旭. 镁质水泥复合固化剂固化有机质土的抗压强度模型[J]. 浙江大学学报(工学版), 2019, 53(11): 2168-2174.
[7] 罗华, 陈祖煜, 龚国芳, 赵宇, 荆留杰, 王超. 基于现场数据的TBM掘进速率研究[J]. 浙江大学学报(工学版), 2018, 52(8): 1566-1574.
[8] 谭件云, 姚善泾. 羧甲基纤维素钠作用下CaCO3微球的制备及表征[J]. J4, 2012, 46(2): 226-231.
[9] 桂跃, 高玉峰, 张庆, 陈国栋, 李振山. 疏浚淤泥生石灰-磷石膏材料化处理效果[J]. J4, 2010, 44(10): 1974-1978.
[10] 郭印 徐日庆 邵允铖. 淤泥质土的固化机理研究[J]. J4, 2008, 42(6): 1071-1075.
[11] 邵玉芳 龚晓南 徐日庆 刘增永. 含腐殖酸软土的固化试验研究[J]. J4, 2007, 41(9): 1472-1476.
[12] 徐日庆 郭印 刘增永. 人工制备有机质固化土力学特性试验研究[J]. J4, 2007, 41(1): 109-113.
[13] 金南国 金贤玉 郑砚国 荒牧军治. 早龄期混凝土断裂性能和微观结构的试验研究[J]. J4, 2005, 39(9): 1374-1377.
[14] 王文军 朱向荣 方鹏飞. 纳米硅粉水泥土固化机理研究[J]. J4, 2005, 39(1): 148-153.