Please wait a minute...
Chinese Journal of Engineering Design  2025, Vol. 32 Issue (2): 159-168    DOI: 10.3785/j.issn.1006-754X.2025.04.165
Robotic and Mechanism Design     
Design and analysis of wind-generator set blade inspection robot
Yan ZHANG1(),Xiaolin HU2,Kaiming WANG2,Hua HUANG2()
1.Gansu Province Special Equipment Inspection and Testing Institute, Lanzhou 730050, China
2.School of Mechanical and Electrical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
Download: HTML     PDF(3396KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Aiming at the difficulty of wind-generator set blade inspection and the poor effect of traditional robot inspection, a wind-generator set blade inspection robot based on legged-and-tracked movement and hybrid adsorption was designed. Firstly, the mechanical characteristics of the robot moving on the blade surface were modeled, the required adsorption forces were calculated under the conditions of slip-free and overturning-free motion, and the equipment components were selected according to the calculation results. Secondly, according to the robot's structural characteristics, the corresponding control system was designed, and its moving gaits on the blade surface were planned and analyzed. Finally, the experiments were conducted to verify the effectiveness of the robot design scheme. The experimental results demonstrated that the robot had flexible moving ability and good adsorption performance, which could meet the actual demand of blade inspection. The research results not only promote the practical application of the robot in wind-generator set blade inspection, but also provide a reference for the progress and popularization of automatic inspection technology in related fields.



Key wordslegged-and-tracked movement      composite adhesion      blade inspection robot      pneumatic actuation     
Received: 22 August 2024      Published: 06 May 2025
CLC:  TP 242  
Corresponding Authors: Hua HUANG     E-mail: 79144469@qq.com;hh318872@126.com
Cite this article:

Yan ZHANG,Xiaolin HU,Kaiming WANG,Hua HUANG. Design and analysis of wind-generator set blade inspection robot. Chinese Journal of Engineering Design, 2025, 32(2): 159-168.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2025.04.165     OR     https://www.zjujournals.com/gcsjxb/Y2025/V32/I2/159


风力发电机叶片检测机器人的设计与分析

针对风力发电机叶片检测难度大及传统机器人检测效果不佳的问题,设计了一种基于足履式移动和复合式吸附的风机叶片检测机器人。首先,对机器人在叶片表面移动时的力学特性进行建模,计算其无滑移和倾覆时所需的吸附力,并根据计算结果进行设备元件的选型;其次,根据机器人结构特性,设计相应的控制系统,并对其在叶片表面的移动步态进行规划与分析;最后,通过实验验证了机器人设计方案的有效性。实验结果表明,该机器人具备灵活的移动能力和良好的吸附性能,能够满足风机叶片检测的实际需求。研究结果促进了机器人在风机叶片检测中的实际应用,还为相关领域自动化检查技术的进步和推广提供了参考。


关键词: 足履式移动,  复合吸附,  叶片检测机器人,  气压驱动 
Fig.1 Structure of wind-generator set blade inspection robot
Fig.2 Structure of track mechanism
Fig.3 Schematic diagram of force on magnetic crawler track
符号含义
f单侧磁吸履带受到的摩擦力
Fn单侧磁吸履带受到的塔筒壁面的支持力
Fm单侧履带对塔筒壁面的吸附力
fii节履带受到的摩擦力
Fn, ii节履带受到的塔筒壁面的支持力
Fm, ii节履带对塔筒壁面的吸附力
Lii节履带到第1节履带的直线距离
L履带下轴心a到上轴心b的距离
H质心c到塔筒壁面的垂直距离
Table 1 Force parameters of magnetic crawler track
Fig.4 Legged mobile mechanism
Fig.5 Schematic diagram of force on cylinder
Fig.6 Suction cup mechanism
Fig.7 Influence of wall inclination angle on adsorption force of suction cup
Fig.8 Structure of frame
Fig.9 Structure of control system
Fig.10 Schematic diagram of pneumatic control system
Fig.11 Schematic of cylinder driving principle
Fig.12 Schematic diagram of circuit control principle
Fig.13 Schematic of suction cup transition switching
Fig.14 X direction gait planning of robot
Fig.15 Y direction gait planning of robot
Fig.16 Adsorption force test of adsorption mechanism
Fig.17 Robot adhered to wall with inclination angle of 90°
Fig.18 Robot adhered to wooden surface with inclination angle of 60°
Fig.19 Adsorption mechanism adsorbed on curvature wall
Fig.20 Robot movement experiment
[1]   陈先龙, 王秀丽, 陈洁, 等. 考虑分布式可再生能源交易的风电商与电动汽车充电站协同优化调度[J]. 电网技术, 2023, 47(11): 4598-4610.
CHEN X L, WANG X L, CHEN J, et al. Optimal collaborative scheduling of wind power operators and electric vehicle charging stations considering distributed renewable energy trading[J]. Power System Technology, 2023, 47(11): 4598-4610.
[2]   王道累, 肖佳威, 刘易腾, 等. 风电机组叶片损伤检测技术研究与进展[J]. 中国电机工程学报, 2023, 43(12): 4614-4631.
WANG D L, XIAO J W, LIU Y T, et al. Research and development of wind turbine blade damage detection technology[J]. Proceedings of the CSEE, 2023, 43(12): 4614-4631.
[3]   张小俊, 吴亚淇, 刘昊学, 等. 轮足式磁吸附越障爬壁机器人设计与分析[J]. 机械工程学报, 2024, 60(1): 248-261. doi:10.3901/jme.2024.01.248
ZHANG X J, WU Y Q, LIU H X, et al. Design and analysis of wheel-footed magnetic adsorption wall-climbing robot with passing obstacles capability[J]. Journal of Mechanical Engineering, 2024, 60(1): 248-261.
doi: 10.3901/jme.2024.01.248
[4]   杨培, 张明路, 孙凌宇. 爬壁机器人磁黏附模块设计分析与参数优化[J]. 工程设计学报, 2024, 31(5): 592-602.
YANG P, ZHANG M L, SUN L Y. Design analysis and structural parameter optimization for magnetic adsorption module of wall-climbing robot[J]. Chinese Journal of Engineering Design, 2024, 31(5): 592-602.
[5]   郑勇峰, 刘昊学. 自适应轮足式爬壁机器人设计与分析[J]. 机械设计, 2021, 38(9): 105-112.
ZHENG Y F, LIU H X. Design and analysis of the self-adaptive wheel-footed wall-climbing robot[J]. Journal of Machine Design, 2021, 38(9): 105-112.
[6]   霍平, 徐阳阳, 于江涛, 等. 一种新型足式爬壁机器人设计[J]. 实验室研究与探索, 2021, 40(10): 77-81.
HUO P, XU Y Y, YU J T, et al. Design of a new foot wall climbing robot[J]. Research and Exploration in Laboratory, 2021, 40(10): 77-81.
[7]   徐阳阳, 于江涛, 李占贤, 等. 足式爬壁机器人的控制系统和实验研究[J]. 传感器与微系统, 2023, 42(9): 14-17.
XU Y Y, YU J T, LI Z X, et al. Control system and experimental research of foot-type wall-climbing robot[J]. Transducer and Microsystem Technologies, 2023, 42(9): 14-17.
[8]   LEE D G, OH S, SON H I. Wire-driven parallel robotic system and its control for maintenance of offshore wind turbines[C]//2016 IEEE International Conference on Robotics and Automation. New York: IEEE, 2016: 902-908.
[9]   SAHBEL A, ABBAS A, SATTAR T. System design and implementation of wall climbing robot for wind turbine blade inspection[C]//2019 International Conference on Innovative Trends in Computer Engineering. New York: IEEE, 2019: 242-247.
[10]   李响, 刘书海, 肖华平, 等. 风电叶片检测机器人设计与运动仿真研究[J]. 现代制造工程, 2023(4): 51-58.
LI X, LIU S H, XIAO H P, et al. Design and motion simulation of a wind turbine blade detection robot[J]. Modern Manufacturing Engineering, 2023(4): 51-58.
[1] Chao QIN,Donglin TANG,Dongpan YOU,Chao DING,Sheng RAO,Yuanyuan HE. Research on navigation of wall-climbing robot based on improved RTAB-Map algorithm[J]. Chinese Journal of Engineering Design, 2025, 32(1): 32-41.
[2] Pei YANG,Minglu ZHANG,Lingyu SUN. Design analysis and structural parameter optimization for magnetic adsorption module of wall-climbing robot[J]. Chinese Journal of Engineering Design, 2024, 31(5): 592-602.
[3] Xin LIU,Feihu LI. Optimization design method for kinematic stability of hexapod robot based on probability-interval hybrid model[J]. Chinese Journal of Engineering Design, 2024, 31(5): 585-591.
[4] Zhe XU,Wei DAI,Yu CAO,Yongguo LI,Shun ZHANG. Improved design and longitudinal pitch optimization of underdriven ROV[J]. Chinese Journal of Engineering Design, 2024, 31(4): 483-490.
[5] Huixuan ZHU,Guangze CUI,Bingnan LI,Kai GUO,Wei WANG,Song LI. Workspace analysis of in situ printing system for repairing large-skin wounds[J]. Chinese Journal of Engineering Design, 2024, 31(4): 529-537.
[6] Boyang ZHANG,Yongli FENG,Jinfeng HUANG,Baowang HUANG. Design of new water-cooled wall robot and research of its electro permanent magnet wheel[J]. Chinese Journal of Engineering Design, 2024, 31(4): 446-455.
[7] Qingsong YU,Xiangrong XU,Yinzhen LIU. Pixel-level grasping pose detection for robots based on Transformer[J]. Chinese Journal of Engineering Design, 2024, 31(2): 238-247.
[8] Rui ZHANG,Wanyue JIANG. Mobile robot target following system based on visual tracking and autonomous navigation[J]. Chinese Journal of Engineering Design, 2023, 30(6): 687-696.
[9] Yaqin TIAN,Menghui HU,Wentao LIU,Yinzhi HOU. Path planning of autonomous mobile robot based on jump point search-genetic algorithm[J]. Chinese Journal of Engineering Design, 2023, 30(6): 697-706.
[10] Mingshuo LI,Lingshuai MENG,Haitao GU,Xinxing CAO,Mingyuan ZHANG. Design and implementation of launch and recovery system for AUV based on USV[J]. Chinese Journal of Engineering Design, 2023, 30(5): 650-656.
[11] Qiqi LI,Xiangrong XU,Hui ZHANG. Sliding mode trajectory tracking control of manipulator based on adaptive neural network[J]. Chinese Journal of Engineering Design, 2023, 30(4): 512-520.
[12] Dong ZHANG,Pei YANG,Zhexuan HUANG,Lingyu SUN,Minglu ZHANG. Design and optimization of pendulous magnetic adsorption mechanism for wall-climbing robots[J]. Chinese Journal of Engineering Design, 2023, 30(3): 334-341.
[13] Guiliang CHEN,Zihao LI,Chao CAI,Yongchao LI,Dong YANG. Design and mechanism optimization of lower limb exoskeleton based on human dynamics analysis[J]. Chinese Journal of Engineering Design, 2023, 30(3): 362-371.
[14] Chunyan ZHANG,Yiwen JIANG,Jie YANG,Xinxing JIANG. Variable-direction multi-terrain mobile full R pair parallel robot[J]. Chinese Journal of Engineering Design, 2023, 30(2): 189-199.
[15] Yang DING,Minglu ZHANG,Xin JIAO,Manhong LI. Biomimetic structure design and compliant motion control for hexapod robot driven by joint motors[J]. Chinese Journal of Engineering Design, 2023, 30(2): 154-163.