Please wait a minute...
Chinese Journal of Engineering Design  2023, Vol. 30 Issue (6): 687-696    DOI: 10.3785/j.issn.1006-754X.2023.03.178
Robotic and Mechanism Design     
Mobile robot target following system based on visual tracking and autonomous navigation
Rui ZHANG(),Wanyue JIANG()
Institute for Future, School of Automation, Qingdao University, Qingdao 266071, China
Download: HTML     PDF(5808KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In response to the issue of target disappearing when a mobile robot is following a target, a robot target following system based on visual tracking and autonomous navigation is proposed. The robot following problem was divided into two cases: regular following when the target was within the robot's field of view, and autonomous navigation after the target disappeared. For the former case, the target's motion state was predicted using a Kalman filter, appearance features were extracted using a pedestrian re-identification network, and target tracking was performed by fusing motion information and appearance features using data association fusion. Servo control was then applied for following the target. For the latter case, an autonomous navigation algorithm was adopted based on the relative position between the historical target and the robot. The robot moved to the history position of the target and searched the target, aiming to increase the success rate of the target following. Evaluations were conducted on the OTB100 benchmark dataset and a target following test dataset which was in robot application scenarios. Experiments were performed on a mobile robot platform. The results showed that the robot could follow the target in the environment with different lighting conditions and more background pedestrians, which verified the robustness and effectiveness of the proposed algorithm, and it could meet the real-time requirement. The research results can provide reference for research on the problem of robot refollowing after the target disappears.



Key wordsmobile robot      target tracking      autonomous navigation      Kalman filtering     
Received: 13 June 2023      Published: 02 January 2024
CLC:  TP 242.6  
Corresponding Authors: Wanyue JIANG     E-mail: 1241070889@qq.com;jwy@qdu.edu.cn
Cite this article:

Rui ZHANG,Wanyue JIANG. Mobile robot target following system based on visual tracking and autonomous navigation. Chinese Journal of Engineering Design, 2023, 30(6): 687-696.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2023.03.178     OR     https://www.zjujournals.com/gcsjxb/Y2023/V30/I6/687


基于视觉跟踪与自主导航的移动机器人目标跟随系统

针对在移动机器人跟随目标的过程中目标消失的情景,提出了基于视觉跟踪与自主导航的机器人目标跟随系统。将机器人跟随问题分为目标在机器人视野内时的常规跟随和目标消失后的自主导航两种情况。对于常规跟随,通过卡尔曼滤波器预测目标运动状态,采用行人重识别网络提取外观特征,通过数据关联融合运动信息和外观特征后进行目标跟踪,再通过伺服控制进行跟随。对于自主导航,基于目标消失前与机器人的相对位置,采用自主导航算法,使机器人移动到目标消失位置附近进行搜索,来提高对目标的跟随成功率。将提出的算法在OTB100公开测试集和机器人应用场景下的跟随测试集中进行评估,并在移动机器人平台上进行实验,结果表明,机器人可以在不同照明条件、背景行人较多的环境中跟随目标,验证了所提算法的稳健性和有效性,同时可满足实时性要求。研究结果可为机器人在目标消失后再跟随问题的研究提供参考。


关键词: 移动机器人,  目标跟踪,  自主导航,  卡尔曼滤波 
Fig.1 Structure of mobile robot
Fig.2 Framework of mobile robot target following system
Fig.3 Target tracking process
Fig.4 Structure of appearance feature extraction network
Fig.5 Schematic of distance and angle of target measured by depth camera
Fig.6 Transformation of robot coordinate system and world coordinate system
Fig.7 Target positioning deviation after robot offset
参数组序号

运动信息

权重λ

关联

阈值δ

外观特征库

更新阈值μ

10.0050.1750.15
20.0050.1650.12
Table 1 Parameter values for the algorithm in this paper
Fig.8 Tracking performance of different algorithms in OTB100 dataset
Fig.9 Tracking effect of the algorithm in this paper on the target in the data stream
Fig.10 Tracking performance of different algorithms in the collected data stream
Fig.11 Predefined target walking path
Fig.12 Following effect from robot camera's perspective
Fig.13 Mobile robot following effect
Fig.14 Robot looking for the disappearing target
[1]   LIU X, ZHANG H T, FANG J X, et al. Intelligent shopping cart with quick payment based on dynamic target tracking[C]//International Conference on Cloud Computing & Intelligence Systems, Beijing, Aug. 17-19, 2016.
[2]   李光煌,罗辉,李万建,等.一种智能跟随高尔夫球杆车:201710808764.7[P].2019-03-19.
LI G H, LUO H, LI W J, et al. An intelligent following golf club cart: 201710808764.7[P]. 2019-03-19.
[3]   姚瀚晨,彭建伟,戴厚德,等.基于改进弹簧模型的移动机器人柔顺跟随行人方法[J].机器人,2021,43(6):684-693. doi:10.13973/j.cnki.robot.200310
YAO H C, PENG J W, DAI H D, et al. A compliant human following method for mobile robot based on an improved spring model[J]. Robot, 2021, 43(6): 684-693.
doi: 10.13973/j.cnki.robot.200310
[4]   徐胜,邢强,王浩.基于环形红外阵列的移动机器人自动跟随系统[J].工程设计学报,2022,29(2):247-253. doi:10.3785/j.issn.1006-754X.2022.00.020
XU S, XING Q, WANG H. Automatic following system of mobile robot based on annular infrared array[J]. Chinese Journal of Engineering Design, 2022, 29(2): 247-253.
doi: 10.3785/j.issn.1006-754X.2022.00.020
[5]   FERRER G, ZULUETA A G, COTARELO F H, et al. Robot social-aware navigation framework to accompany people walking side-by-side[J]. Autonomous Robots, 2016, 41(4): 775-793.
[6]   CHUNG W. The detection and following of human legs through inductive approaches for a mobile robot with a single laser range finder[J]. IEEE Transactions on Industrial Electronics, 2012, 59(8): 3156-3166.
[7]   LING J, CHAI H, LI Y, et al. An outdoor human-tracking method based on 3D lidar for quadruped robots[C]//2019 IEEE 9th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems, Suzhou, Jul. 29-Aug. 2, 2019.
[8]   CHENG X, JIA Y, SU J, et al. Person-following for telepresence robots using web cameras[C]//2019 IEEE/RSJ International Conference on Intelligent Robots and Systems, Macau, Nov. 3-8, 2019.
[9]   SUN T, NIE S, YEUNG D Y, et al. Gesture-based piloting of an aerial robot using monocular vision[C]//IEEE International Conference on Robotics & Automation, Singapore, May 29-Jun. 2, 2017.
[10]   KOIDE K, MIURA J. Identification of a specific person using color, height, and gait features for a person following robot[J]. Robotics and Autonomous Systems, 2016, 84: 76-87.
[11]   余铎,王耀南,毛建旭,等.基于视觉的移动机器人目标跟踪方法[J].仪器仪表学报,2019,40(1):227-235.
YU D, WANG Y N, MAO J X, et al. Vision-based object tracking method of mobile robot[J]. Chinese Journal of Scientific Instrument, 2019, 40(1): 227-235.
[12]   万琴,李智,葛柱,等.基于改进YOLOX的移动机器人目标跟随方法[J/OL].自动化学报,2023,49(7):1558-1572.
WAN Q, LI Z, GE Z, et al. Target tracking method of mobile robot based on improved YOLOX[J/OL]. Acta Automatica Sinica, 2023, 49(7): 1558-1572.
[13]   HENRIQUES J F, CASEIRO R, MARTINS P, et al. Exploiting the circulant structure of tracking-by-detection with kernels[C]//Computer Vision–ECCV 2012: 12th European Conference on Computer Vision, Florence, Italy, Oct. 7-13, 2012.
[14]   HENRIQUES J F, CASEIRO R, MARTINS P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2015, 37(3): 583-596.
[15]   DANELLJAN M, KHAN F S, HAGER G. Discriminative scale space tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(8): 1561-1575.
[16]   BERTINETTO L, VALMADRE J, Henriques J F, et al. Fully-convolutional Siamese networks for object tracking[C]//Proceedings of the European Conference on Computer Vision. Amsterdam, The Netherlands: Springer, 2016: 850-865.
[17]   LI B, YAN J J, WU W, et al. High performance visual tracking with Siamese region proposal network[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun. 18-22, 2018.
[18]   LI B, WU W, WANG Q, et al. SiamRPN++: evolution of Siamese visual tracking with very deep networks[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Jun. 16-20, 2019.
[19]   Ultralytics. Yolov5[CP/OL].(2022-11-22)[2023-06-01]. .
[20]   Computer Science Department at the University of Massachusetts. Welcome to the computer vision lab[DB/OL].(2018-01-09)[2023-06-01]. .
[21]   VOIGTLAENDER P, LUITEN J, TORR P, et al. Siam R-CNN: visual tracking by re-detection[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun. 14-19, 2020.
[22]   KALAL Z, MIKOLAJCZYK K, MATAS J. Tracking-learning-detection[J]. IEEE Transactions on Software Engineering, 2011, 34(7): 1409-1422.
[23]   DANELLJAN M, HÄGER G, KHAN F S, et al. Accurate scale estimation for robust visual tracking[C]//British Machine Vision Conference, Nottingham, Sept. 1-5, 2014.
[24]   DANELLJAN M, HAGER G, KHAN F S, et al. Learning spatially regularized correlation filters for visual tracking[C]//2015 IEEE International Conference on Computer Vision, Santiago, Dec. 7-13, 2015.
[1] Jianhua WANG,Lei HUANG,Yuting SHI,Xiaoqian ZHANG,Liangjian QI. Design of robot autonomous navigation system based on optimized Hector-SLAM algorithm[J]. Chinese Journal of Engineering Design, 2023, 30(6): 678-686.
[2] Sheng XU,Qiang XING,Hao WANG. Automatic following system of mobile robot based on annular infrared array[J]. Chinese Journal of Engineering Design, 2022, 29(2): 247-253.
[3] ZHANG Hong, QIU Xiao-tian. Omni-directional mobile navigation system based on ROS and EtherCAT[J]. Chinese Journal of Engineering Design, 2021, 28(2): 241-247.
[4] ZHENG Ming-jun, ZHAO Chen-lei, WU Wen-jiang, YANG She. Analysis and optimization of all-terrain mobile robot body structure[J]. Chinese Journal of Engineering Design, 2021, 28(2): 195-202.
[5] WANG Xin-yu, PING Xue-liang. Speed control method of mobile robot based on multi-sensor fusion information[J]. Chinese Journal of Engineering Design, 2021, 28(1): 63-71.
[6] YIN He-sheng, ZHANG Qiu-ju, NING Meng. Design of synchronous steering mechanism of driving wheel for omnidirectional mobile robot[J]. Chinese Journal of Engineering Design, 2018, 25(2): 230-236.
[7] WANG Wei-jun, YANG Gui-lin, ZHANG Chi, CHEN Qing-ying. Design and realization of powered caster wheel for omnidirectional mobile robot[J]. Chinese Journal of Engineering Design, 2016, 23(6): 633-638.
[8] WU Xiao, HUA Liang, GU Ju-Ping, WANG Sheng-Feng, ZHANG Qi, NI Ling. Research on welding torch precision positioning control system for welding mobile robot using ultrasonic motors[J]. Chinese Journal of Engineering Design, 2010, 17(5): 372-376.
[9] HUA Liang, FENG Hao, GU Ju-Ping, ZHANG Jian-Sheng. Wall following navigation strategy for mobile robot-using single ultrasonic sensor[J]. Chinese Journal of Engineering Design, 2008, 15(3): 206-212.
[10] WEI Pi-Yong, YAN Qing-Dong, MA Yue. Research on driving system design and simulation of unmanned ground weapon mobile platform[J]. Chinese Journal of Engineering Design, 2005, 12(3): 152-158.
[11] XIA Feng, SUN You-Xian. Design of automatic guided vehicle model[J]. Chinese Journal of Engineering Design, 2003, 10(2): 66-69.