Please wait a minute...
Chinese Journal of Engineering Design  2023, Vol. 30 Issue (6): 678-686    DOI: 10.3785/j.issn.1006-754X.2024.03.161
Robotic and Mechanism Design     
Design of robot autonomous navigation system based on optimized Hector-SLAM algorithm
Jianhua WANG(),Lei HUANG(),Yuting SHI,Xiaoqian ZHANG,Liangjian QI
School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China
Download: HTML     PDF(2511KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Aiming at the problems of inaccurate positioning, low mapping accuracy and error accumulation of robots in complex terrain environments, an autonomous navigation system based on optimized Hector-SLAM (simultaneous localization and mapping) algorithm is designed, which ensures that the robot reaches the target point accurately while avoiding obstacles promptly. Firstly, the bicubic interpolation method was used to replace the original interpolation method to solve the problem of map blurring when the Hector-SLAM algorithm was used to build maps with low-precision lidar data, so as to improve the accuracy of scan matching. Secondly, the extended Kalman filter algorithm was used to fuse the data of odometer and inertial measurement unit, which could improve the positioning accuracy. Thirdly, in view of the problem of motion distortion caused by the inability to obtain instantaneous laser point data and the continuous movement of robot, the odometer auxiliary method and PL-ICP (point to line iterative closest points) registration method were combined to realize the correction of motion distortion. At the same time, the tilt angle threshold was set to eliminate the map ghosting, and the optimal path was planned by using A* algorithm and dynamic window approach. Finally, taking AGV (automated guided vehicle) as an example, the mapping experiments and autonomous navigation experiments were carried out in actual scenarios. The results showed that the average mapping relative error of the optimized autonomous navigation system was about 0.44%, and the minimum mapping error was 0.236 m, which was 0.041 m less than that before optimization. It effectively solved the problem of unclear mapping caused by error accumulation and motion distortion, and enhanced the adaptability of AGV in complex terrain environment, so as to achieve high-precision positioning. The research results have certain theoretical and engineering significance for improving the autonomous navigation ability of mobile robots in indoor multi-obstacle environment.



Key wordsHector-SLAM (simultaneous localization and mapping)      bicubic interpolation method      motion distortion      ghosting elimination      autonomous navigation     
Received: 05 May 2023      Published: 02 January 2024
CLC:  TH 741  
Corresponding Authors: Lei HUANG     E-mail: 18816212079@163.com;huanglei@njfu.edu.cn
Cite this article:

Jianhua WANG,Lei HUANG,Yuting SHI,Xiaoqian ZHANG,Liangjian QI. Design of robot autonomous navigation system based on optimized Hector-SLAM algorithm. Chinese Journal of Engineering Design, 2023, 30(6): 678-686.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2024.03.161     OR     https://www.zjujournals.com/gcsjxb/Y2023/V30/I6/678


基于优化Hector-SLAM算法的机器人自主导航系统设计

针对机器人在复杂地形环境下定位不准确、建图精度不高和误差堆积等问题,设计了一种基于优化Hector-SLAM(simultaneous localization and mapping,实时定位与建图)算法的自主导航系统,以实现机器人在及时躲避障碍物的同时准确到达目标点。首先,采用双三次插值法代替原有插值法,以解决Hector-SLAM算法在使用低精度激光雷达数据建图时易出现地图不清晰等问题,从而提升扫描匹配的精准度。其次,采用扩展卡尔曼滤波算法对里程计和惯性测量单元的数据进行融合,以提高定位的准确性。再次,针对激光点数据无法瞬时获得而机器人持续运动所导致的运动畸变问题,结合里程计辅助法与PL-ICP(point to line iterative closest points,点到线迭代最近点)配准法,以实现运动畸变的校正;同时,设置倾斜角阈值以消除地图重影,并利用A*算法和动态窗口法规划最优路径。最后,以AGV(automated guided vehicle,自主导引车)为例,在实际场景中开展建图实验和自主导航实验。结果表明,优化后自主导航系统的平均建图相对误差约为0.44%,最小建图误差为0.236 m,较优化前减小了0.041 m,有效地解决了因误差堆积和运动畸变而导致的建图不清晰问题,增强了AGV在复杂地形环境中的适应能力,实现了高精度定位。研究结果对提高移动机器人在室内多障碍物环境下的自主导航能力具有一定的理论和工程意义。


关键词: Hector-SLAM(实时定位与建图),  双三次插值法,  运动畸变,  消除重影,  自主导航 
Fig.1 Schematic of bicubic interpolation model
软硬件设备型号
树莓派英伟达Jetson Xavier
激光雷达RPLIDAR-A1
AGV底盘松灵TRACER
IMUGY-85
操作系统Ubuntu 18.04 ROS melodic desktop full
Table 1 Hardware and software equipment of AGV
Fig.2 Physical diagram of AGV chassis
Fig.3 Lidar equipped on AGV autonomous navigation system
Fig.4 Comparison of mapping effects before and after Hector-SLAM algorithm optimization
Fig.5 Second floor corridor in Ninth Teaching Building of NJFU in Baidu map
Fig.6 Mapping results of second floor corridor in Ninth Teaching Building of NJFU
Fig.7 Third floor corridor in Yifu Building of NJFU in Baidu map
Fig.8 Mapping results of third floor corridor in Yifu Building of NJFU
Fig.9 Schematic of second floor corridor in Ninth Teaching Building of NJFU
建图算法走廊编号实测值/mSLAM测量值/m误差/m相对误差/%

优化前

Hector-SLAM

a91.11091.4670.3570.392
b90.77091.1220.3520.388
c45.67045.9470.2770.607
d45.93046.2130.2830.616

优化后

Hector-SLAM

a91.11091.4280.3180.349
b90.77091.0820.3120.344
c45.67045.9060.2360.517
d45.93046.1750.2450.533
Table 2 Comparison of mapping errors of AGV autonomous navigation system before and after optimization
Fig.10 Starting point of AGV autonomous navigation in Rviz platform
Fig.11 Autonomous navigation process of AGV in Rviz platform
Fig.12 Obstacle avoidance process of AGV in actual scenario
Fig.13 Obstacle avoidance process of AGV in Rviz platform
[1]   于宁波,王石荣,徐昌.一种基于RGB-D的移动机器人未知室内环境自主探索与地图构建方法[J].机器人,2017,39(6):860-871. doi:10.13973/j.cnki.robot.2017.0860
YU N B, WANG S R, XU C. RGB-D based autonomous exploration and mapping of a mobile robot in unknown indoor environment[J]. Robot, 2017, 39(6): 860-871.
doi: 10.13973/j.cnki.robot.2017.0860
[2]   MISIR O. Dynamic local path planning method based on neutrosophic set theory for a mobile robot[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2023, 45(3): 127.
[3]   崔嵩鹤,姜树海,耿志斌.人工林立木整枝作业机械研究进展[J].世界林业研究,2019,32(5):47-51. doi:10.13348/j.cnki.sjlyyj.2019.0055.y
CUI S H, JIANG S H, GENG Z B. Research progress in tree pruning machinery for plantation[J]. World Forestry Research, 2019, 32(5): 47-51.
doi: 10.13348/j.cnki.sjlyyj.2019.0055.y
[4]   郭伟斌,陈勇.基于模糊控制的除草机器人自主导航[J].机器人,2010,32(2):204-209. doi:10.3724/sp.j.1218.2010.00204
GUO W B, CHEN Y. Fuzzy control based autonomous navigation for a weeding robot[J]. Robot, 2010, 32(2): 204-209.
doi: 10.3724/sp.j.1218.2010.00204
[5]   WU B, CHI X N, ZHAO C C, et al. Dynamic path planning for forklift AGV based on smoothing A* and improved DWA hybrid algorithm[J]. Sensors, 2022, 22(18): 7079.
[6]   TAHERI H, XIA Z. SLAM; definition and evolution[J]. Engineering Applications of Artificial Intelligence, 2021, 97: 104032.
[7]   HUANG L, SHI Y T, WANG J H, et al. Novel pedestrian navigation system based on zero velocity update procedure technology and improved Sage-Husa adaptive Kalman filter with index fading memory factor [J]. IET Wireless Sensor System, 2023, 13(2): 48-57.
[8]   支奕琛,谷玉海,龚志力,等.机器人二维码目标点识别与SLAM地图标记研究[J].机床与液压,2022,50(15):20-24. doi:10.3969/j.issn.1001-3881.2022.15.004
ZHI Y C, GU Y H, GONG Z L, et al. Research on target recognition of robot quick response code and SLAM map marking[J]. Machine Tool & Hydraulics, 2022, 50(15): 20-24.
doi: 10.3969/j.issn.1001-3881.2022.15.004
[9]   GUAN R P, RISTIC B, WANG L P, et al. KLD sampling with Gmapping proposal for Monte Carlo localization of mobile robots[J]. Information Fusion, 2019, 49: 79-88.
[10]   苏易衡,张奇志,周亚丽.适用于低端激光雷达的优化Hector SLAM算法[J].实验室研究与探索,2019,38(9):47-51. doi:10.3969/j.issn.1006-7167.2019.09.012
SU Y H, ZHANG Q Z, ZHOU Y L. Hector SLAM algorithm for low performance lidar[J]. Research and Exploration in Laboratory, 2019, 38(9): 47-51.
doi: 10.3969/j.issn.1006-7167.2019.09.012
[11]   周燕.地铁隧道内四旋翼自主导航系统设计[D].南京:南京理工大学,2021:35-40. doi:10.1109/icca51439.2020.9264455
ZHOU Y. Design of autonomous navigation system for quadrotor in subway tunnel[D]. Nanjing: Nanjing University of Science and Technology, 2021: 35-40.
doi: 10.1109/icca51439.2020.9264455
[12]   ALMASRI M, ELLEITHY K, ALAJLAN A. Sensor fusion based model for collision free mobile robot navigation[J]. Sensors, 2016, 16(1): 24.
[13]   ZHAO J W, LIU S Y, LI J Y. Research and implementation of autonomous navigation for mobile robots based on SLAM algorithm under ROS[J]. Sensors, 2022, 22(11): 4172.
[14]   薛迎港.基于ROS的仓储机器人自主导航研究和实现[D].西安:西安工业大学,2022:25-26. doi:10.17520/biods.2023167
XUE Y G. Research and implementation of automatic navigation of warehouse robot based on ROS[D]. Xi’an: Xi’an Technological University, 2022: 25-26.
doi: 10.17520/biods.2023167
[15]   张洪,邱晓天.基于EtherCAT的ROS全向移动导航系统[J].工程设计学报,2021,28(2):241-247. doi:10.3785/j.issn.1006-754X.2021.00.021
ZHANG H, QIU X T. Omni-directional mobile navigation system based on ROS and EtherCAT[J]. Chinese Journal of Engineering Design, 2021, 28(2): 241-247.
doi: 10.3785/j.issn.1006-754X.2021.00.021
[16]   陈甲伟,刘英,於亚斌,等.基于节点优简算法的实木板材自动搬运系统[J].计算机集成制造系统,2020,26(9):2522-2530. doi:10.13196/j.cims.2020.09.021
CHEN J W, LIU Y, YU Y B, et al. Automatic handling system of solid wood panels based on node simplification algorithm[J]. Computer Integrated Manufacturing Systems, 2020, 26(9): 2522-2530.
doi: 10.13196/j.cims.2020.09.021
[17]   郝奇,陈智君,郑亮,等.基于概率匹配的栅格地图拼接算法[J].组合机床与自动化加工技术,2022(5):83-87.
HAO Q, CHEN Z J, ZHENG L, et al. Mosaic algorithm of grid map based on probability matching[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2022(5): 83-87.
[18]   EISENSTAT S, JACKSON K, LEWIS J. The order of monotone piecewise cubic interpolation[J]. SIAM Journal on Numerical Analysis, 1985, 22(6): 1220-1237.
[19]   岳胜杰,王红旗,刘群坡,等.结合扩展卡尔曼滤波与基于点线的最近点迭代扫描匹配算法的机器人位姿自适应估计[J].测绘通报,2022(7):49-53. doi:10.3969/j.issn.0494-0911.2022.7.chtb202207009
YUE S J, WANG H Q, LIU Q P, et al. Adaptive pose estimation for robot based on extended Kalman filter and point-line iterative closest point[J]. Bulletin of Surveying and Mapping, 2022(7): 49-53.
doi: 10.3969/j.issn.0494-0911.2022.7.chtb202207009
[20]   李荣华,王振宇,陈凤,等.空间失稳目标线阵成像畸变分析与三维重建[J].宇航学报,2020,41(2):224-233. doi:10.3873/j.issn.1000-1328.2020.02.012
LI R H, WANG Z Y, CHEN F, et al. Distortion analysis and 3D reconstruction of space instability target line array imaging[J]. Journal of Astronautics, 2020, 41(2): 224-233.
doi: 10.3873/j.issn.1000-1328.2020.02.012
[21]   孙贵杰.自主移动机器人控制系统研究[D].长春:吉林大学,2021:22-50.
SUN G J. Research on control system of autonomous mobile robot[D]. Changchun: Jilin University, 2021: 22-50.
[22]   熊求兴.基于图像梯度稀疏性先验去除重影反射[D].长沙:湖南师范大学,2020:25-39.
XIONG Q X. Ghost reflection removal using imagegradient sparsity prior[D]. Changsha: Hunan Normal University, 2020: 25-39.
[23]   刘宇程,姜振华,胡俊.基于ROS平台的六自由度机械臂轨迹规划及仿真研究[J].制造业自动化,2022,44(1):38-41. doi:10.3969/j.issn.1009-0134.2022.01.009
LIU Y C, JIANG Z H, HU J. Research on trajectory planning and simulation of 6-DOF manipulator based on ROS[J]. Manufacturing Automation, 2022, 44(1): 38-41.
doi: 10.3969/j.issn.1009-0134.2022.01.009
[24]   张浩.基于A*算法的自动泊车全局路径规划算法研究[D].长春:吉林大学,2022:29-36.
ZHANG H. Research on global path planning algorithm of automatic parking based on A* algorithm[D]. Changchun: Jilin University, 2022: 29-36.
[1] ZHANG Hong, QIU Xiao-tian. Omni-directional mobile navigation system based on ROS and EtherCAT[J]. Chinese Journal of Engineering Design, 2021, 28(2): 241-247.