Please wait a minute...
Chinese Journal of Engineering Design  2018, Vol. 25 Issue (2): 230-236    DOI: 10.3785/j.issn.1006-754X.2018.02.015
    
Design of synchronous steering mechanism of driving wheel for omnidirectional mobile robot
YIN He-sheng1,2, ZHANG Qiu-ju1,2, NING Meng1,2
1. School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China;
2. Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Wuxi 214122, China
Download: HTML     PDF(5666KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Aiming at the problem of poor synchronous steering capability existing wheeled omnidirectional mobile robot in practical engineering applications,a synchronous steering structure of driving wheel is designed. Firstly, the working mechanism of the synchronous steering mechanism was analyzed based on virtual prototyping technology. Then, the kinematics analysis of the robot with the synchronous steering mechanism was carried out based on the kinematics principle and the relationship between the motor input speed and the steering speed of the driving wheel was obtained. Lastly, according to the structural parameters of the system, a physical prototype of the robot which was mainly used in the material handling of the factory was manufactured and verified by experiment. The results of lateral movement experiment of the robot showed that this robot can move in all directions through different ways, which verified the omnidirectional moving function of the robot. The research indicates that the application of synchronous steering mechanism can reduce the control difficulty of wheeled omnidirectional mobile robot and realize the omnidirectional mobile robot with high speed, high precision and high stability.



Key wordsomnidirectional mobile robot      steering mechanism      kinematics analysis      gear drive      drive wheel     
Received: 06 June 2017      Published: 28 April 2018
CLC:  TP242.6  
  TH122  
Cite this article:

YIN He-sheng, ZHANG Qiu-ju, NING Meng. Design of synchronous steering mechanism of driving wheel for omnidirectional mobile robot. Chinese Journal of Engineering Design, 2018, 25(2): 230-236.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2018.02.015     OR     https://www.zjujournals.com/gcsjxb/Y2018/V25/I2/230


全向移动机器人驱动轮同步转向机构设计

针对现有轮式全向移动机器人在工程实际应用中存在的驱动轮同步转向能力差的问题,设计了驱动轮同步转向机构。首先,基于虚拟样机技术分析了该同步转向机构的工作原理,并将它应用于轮式全向移动机器人。然后,利用运动学原理对加入同步转向机构机器人进行运动学分析,得到了电机输入转速与驱动轮转向速度之间的关系。最后,根据系统结构参数研制了一款主要应用于工厂物料搬运工作的产品样机并进行实验验证。机器人横向移动实验结果表明,该机器人可以通过不同方式进行全向移动,验证了该机器人的全向移动功能。研究表明同步转向机构的应用降低了轮式全向移动机器人控制难度,实现了机器人高速、高精度、高稳定性全向移动。


关键词: 全向移动机器人,  转向机构,  运动学分析,  齿轮传动,  驱动轮 

[1] BRUZZONE L, QUAGLIA G. Review article:locomotion systems for ground mobile robots in unstructured environments[J].Mechanical Sciences, 2012, 3(2):49-62.
[2] CONDURARU A, DOROFTEI I, CONDURARU I. An overview on the design of mobile robots with hybrid locomotion[J]. Advanced Materials Research, 2013, 837(3):555-560.
[3] 李智卿,马书根,李斌,等.具有自适应能力轮-履复合变形移动机器人的开发[J].机械工程学报,2011,47(5):1-10. LI Zhi-qing, MA Shu-gen, LI Bin, et al. Development of a transformable wheel-track robot with self-adaptive ability[J]. Journal of Mechanical Engineering, 2011, 47(5):1-10.
[4] 李允旺,葛世荣,朱华,等.四履带双摆臂机器人越障机理及越障能力[J].机器人,2010,32(2):157-165. LI Yun-wang, GE Shi-rong, ZHU Hua, et al. Obstacle-surmounting mechanism and capability of four-track robot with two swing arms[J]. Robot, 2010, 32(2):157-165.
[5] GHOTBI Bahareh,GONZÁLEZB Francisco, KÖVECSES József, et al. Mobility evaluation of wheeled robots on soft terrain:effect of internal force distribution[J]. Mechanism and Machine Theory, 2016, 256(3):259-282.
[6] CHAN Ronald Ping Man, STOL Karl A, HALKYARD C Roger, et al. Review of modelling and control of two-wheeled robots[J]. Annual Reviews in Control, 2013, 37(1):89-103.
[7] 黄涛,张豫南,田鹏,等.一种履带式全方位移动平台的设计与运动学分析[J].机械工程学报,2014,50(21):206-212. HUANG Tao, ZHANG Yu-nan, TIAN Peng, et al. Design & kinematics analysis of a tracked omnidirectional mobile platform[J]. Journal of Mechanical Engineering, 2014, 50(21):206-212.
[8] 熊光明,龚建伟,徐正飞,等.轮式移动机器人滑动转向研究综述[J].机床与液压,2003(6):9-12. XIONG Guang-ming, GONG Jian-wei, XU Zheng-fei, et al. Overview of research on skid-steer wheeled mobile robot[J]. Machine Tool & Hydraulics, 2003(6):9-12.
[9] RATNER Danny, MCKERROW Phillip.Navigating an outdoor robot along continuous landmarks with ultrasonic sensing[J]. Robotics and Autonomous Systems, 2003, 45(2):73-82.
[10] MIYATAH, OHKI M, YOKOUCHI Y, et al. Control of the autonomous mobile robot DREAM-1 for a parallel parking[J]. Mathematics and Computers in Simulation, 1996, 41(1/2):129-138.
[11] MAALOUF E, SAAD M, SALIAH H, et al. A higher level path tracking controller for a four-wheel differentially steered mobile robot[J]. Robotics and Autonomous Systems, 2006, 54(1):23-33.
[12] DUMITRASCU B, FILIPESCU A, RADASCHIN A, et al. Discrete-time sliding mode control of wheeled mobile robots[C]//20118th Asian Control Conference (ASCC),Taiwan, May 15-18, 2011.
[13] 王一治,常德功.Mecanum四轮全方位系统的运动性能分析及结构形式优选[J].机械工程学报,2009,56(5):307-310. WANG Yi-zhi, CHANG De-gong. Motion perf-romance analysis and layout selection for motion system with four Mecanum wheels[J]. Journal of Mechanical Engineering, 2009, 56(5):307-310.
[14] 熊有伦.机器人技术基础[M].武汉:华中科技大学出版社,1996:91-113. XIONG You-lun. Fundamentals of robots techniques[M]. Wuhan:Huazhong University of Science and Technology Press, 1996:91-113.
[15] 哈尔滨工业大学理论力学教研室.理论力学[M].北京:高等教育出版社,2009:113-125. Department of Theoretical Mechanics, Harbin Institute of Technology. Theoretical mechanics[M]. Beijing:Higher Education Press, 2009:113-125.
[16] TROYANOVSKAYA I P, POZIN B M. Forces of friction at the wheel-to-ground contact in a turning vehicle[J]. Procedia Engineering, 2015, 129(8):156-160.
[17] RAZAK A A A, ABDULLAH A H, KAMARUDIN K, et al. Mobile robot structure design, modeling and simulation for confined space application[C]//20162nd IEEE International Symposium on Robotics and Manufacturing Automation (ROMA), Ipoh, Sep. 25-27, 2016.

[1] Chun-yan ZHANG,Bing DING,Zhi-qiang HE,Jie YANG. Kinematics analysis and optimization of rotary multi-legged bionic robot[J]. Chinese Journal of Engineering Design, 2022, 29(3): 327-338.
[2] LI Jing, ZHU Ling-yun, GOU Xiang-feng. Kinematics analysis of lower limb rehabilitation exoskeleton mechanism based on human-machine closed chain[J]. Chinese Journal of Engineering Design, 2019, 26(1): 65-72,109.
[3] GAO Zheng, WANG Lu, GUO Yu-ying. Kinematics analysis of detection device of cable-link wind turbine blades[J]. Chinese Journal of Engineering Design, 2018, 25(2): 188-193.
[4] WANG Wei-jun, YANG Gui-lin, ZHANG Chi, CHEN Qing-ying. Design and realization of powered caster wheel for omnidirectional mobile robot[J]. Chinese Journal of Engineering Design, 2016, 23(6): 633-638.
[5] SHU Zhi-wei, CHEN Xin-yuan, DENG Jiang-hong, ZHAN Xiao-hui. Design of casting powder adding area rectangular compensation mechanism for casting powder feeder of continuous casting crystallizer[J]. Chinese Journal of Engineering Design, 2015, 22(5): 420-424.
[6] XIE Jun, LIU Yue, XIAO Chao-Peng, YANG Qi-Zhi, DENG Hui. Mechanism design and kinematics simulation of 3-DOF parallel material vibration sorting platform[J]. Chinese Journal of Engineering Design, 2013, 20(6): 501-506.
[7] QIU Ke, ZHAO Yong-Jie, LU Song. Inverse jerk analysis of three rotational degrees of freedom NC table[J]. Chinese Journal of Engineering Design, 2013, 20(2): 131-134.
[8] LI Xiao-Zhou, HUANG Hua-Liang. Research on contact-fatigue strength of 45 # steel gear drives with Ni-P-Co alloy coating[J]. Chinese Journal of Engineering Design, 2002, 9(4): 211-214.