Please wait a minute...
Chinese Journal of Engineering Design  2018, Vol. 25 Issue (2): 188-193    DOI: 10.3785/j.issn.1006-754X.2018.02.009
    
Kinematics analysis of detection device of cable-link wind turbine blades
GAO Zheng, WANG Lu, GUO Yu-ying
School of Electronics and Information Engineering, Hebei University, Baoding 071000, China
Download: HTML     PDF(1419KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In view of the defects existing in the detection device of wind turbine blades, a cable-link detection device is designed. Firstly, the components, special structural design and working method of the device were briefly introduced. Secondly, the kinematics analysis for the core part-cable-link detection platform was carried out to study the relationship between the pose of the moving platform on the detection platform and the length change of the driving ropes and the driving hydraulic cylinder, and the velocity variation of the branched chains of the moving platform in a specific movement process. The moving coordinate system and the fixed coordinate system were established on the moving platform and the fixed platform, the forward and inverse kinematics analysis models of the parallel detection platform were obtained by Newton Raphson iteration and space vectors method, respectively. The velocity Jacobian matrix of the mechanism was deduced by analytical method. Finally, the detailed numerical calculation was carried out through MATLAB programming, the correctness of Newton Raphson iteration was verified by inverse kinematics analysis and the velocity variation curve of branched chains was plotted, which laid a theoretical foundation for the research on workspace and real time control of the detection device.



Key wordsdetection device of wind turbine blades      cable-link structure      parallel platform      forward and inverse kinematics analysis      Jacobian matrix     
Received: 02 May 2017      Published: 28 April 2018
CLC:  TP24  
Cite this article:

GAO Zheng, WANG Lu, GUO Yu-ying. Kinematics analysis of detection device of cable-link wind turbine blades. Chinese Journal of Engineering Design, 2018, 25(2): 188-193.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2018.02.009     OR     https://www.zjujournals.com/gcsjxb/Y2018/V25/I2/188


索杆式风电叶片检测装置的运动学分析

针对现有的风电叶片检测装置存在的缺陷,设计了一种由索杆混联结构驱动的风电叶片检测装置。首先,简述了该装置的零部件组成、独特的结构设计以及工作方式。其次,对其核心部件——索杆式检测平台进行了运动学分析,研究了检测平台上动平台的位姿与驱动绳索、驱动液压缸长度之间的关系以及动平台的4条驱动支链在指定运动过程中速度的变化,即针对检测平台的动平台和定平台分别建立了动坐标系和定坐标系,分别利用Newton-Raphson迭代法和空间向量分析法得出了并联检测平台的运动正反解模型,并且通过分析法推导出机构的速度雅克比矩阵。最后通过MATLAB编程,进行了正反解数值计算,通过位置反解验证了Newton-Raphson迭代法的正确性并绘制出驱动支链的运动变化曲线,为后续该检测装置工作空间及其实时控制的研究打下了理论基础。


关键词: 风电叶片检测装置,  索杆混联结构,  并联平台,  运动学正反解分析,  雅克比矩阵 

[1] 程启明,程尹曼,王映斐,等.风力发电系统技术的发展综述[J].自动化仪表,2012,33(1):1-8. CHENG Qi-ming, CHENG Yin-man, WANG Ying-fei, et al. Overview of the development of control technique for wind power generation[J]. Process Automation Instrumentation, 2012, 33(1):1-8.
[2] 李军军,吴政球,谭勋琼,等.风力发电及其技术发展综述[J].电力建设,2011,32(8):64-72. LI Jun-jun, WU Zheng-qiu, TAN Xun-qiong, et al. Review of wind power generation and relative technology development[J]. Electric Power Construction, 2011, 32(8):64-72.
[3] 周伟,张洪波,马立辉,等.风电叶片复合材料结构缺陷无损检测研究进展[J].塑料科技,2013,38(12):84-86. ZHOU Wei, ZHANG Hong-bo, MA Li-hui, et al. Advances in non-destructive testing of structure defects for wind turbine blade computer material[J]. Plastics Science and Technology, 2013, 38(12):84-86.
[4] 羊森林,赵萍,王峰,等.大型风电叶片缺陷及其无损检测技术研究[J].东方汽轮机,2012(1):26-34. YANG Sen-lin, ZHAO Ping, WANG Feng, et al. Study on the defects of large-scale wind turbine blades and the non-destructive testing techniques[J]. Dongfang Turbine, 2012(1):26-34.
[5] STENSGAARD T H, KIM B, PETER B, et al. Distribution of defects in wind turbine blades and reliability assessment of blades containing defects[J]. Engineering Structures, 2011, 33(1):171-180.
[6] 方文平,刘日明.风电叶片超声无损检测装置:CN106226013A[P].2016-12-14. FANG Wen-ping, LIU Ri-ming. Ultrasonic non-destructive detection device of wind turbine blades:CN106226013A[P]. 2016-12-14.
[7] WANG Ke-yi, ZHANG Li-xun, MENG Hao. Driving properties of plane wire-driven robot[J]. Journal of Central South University, 2013, 20(1):56-61.
[8] 李巍,赵志刚,石广田,等.多机器人并联绳牵引系统的运动学及动力学解[J].浙江大学学报(工学版),2015,49(10):1916-1923. LI Wei, ZHAO Zhi-gang, SHI Guang-tian, et al. Solution of kinematics and dynamics for parallel cable-driven system with multi-robots[J]. Journal of Zhejiang University (Engineering Science), 2015, 49(10):1916-1923.
[9] BEHZADIPOUR S. Kinematics and dynamics of a self-stress cartesian cable-driven mechanism[J]. Journal of Mechanical Design, 2009, 131(6):061005.
[10] HE J H. Improvement of Newton iteration method[J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2000, 1(3):239-240.
[11] ABBASBANDY S. Improving Newton-Raphson method for nonlinear equations by modify adomian decomposition method[J]. Applied Mathematics & Computation, 2003, 145(2/3):887-893.
[12] 张彦斌,吴鑫,刘宏昭,等.一种新兴并联机器人机构的运动分析及完全各向同性研究[J].中国机械工程,2008,19(2):213-216. ZHANG Yan-bin, WU Xin, LIU Hong-zhao, et al. Kinematics analysis and fully-isotropic design of a novel parallel robotic manipulator[J]. China Mechanical Engineering, 2008, 19(2):213-216.
[13] SHI Zhong, HUANG Xue-xiang, HU Tian-jian, et al. Weighted augment Jacobian matrix with a variable coefficient method for kinematics mapping of space teleoperation based on human-robot motion similarity[J]. Advanced in Space Research, 2016, 58(7):1401-1416.
[14] 杨尹,顾寄南,郭林.基于ADAMS的4-RUPaR高速搬运并联机器人轨迹规划与运动学仿真[J].工程设计学报,2013,20(5):375-382. YANG Yin, GU Ji-nan, GUO Lin. Trajectory planning and kinematics simulation of the 4-RUPaR high-speed handling parallel robot based on ADAMS[J]. Chinese Journal of Engineering Design, 2013, 20(5):375-382.

[1] ZHANG Jun-bao, HOU Hong-juan, LIU Jian, SUN Ding-ding, XIE Lei-lei. Research on rigid-flexible 3CD/2RPU-SPR friction stir welding robot[J]. Chinese Journal of Engineering Design, 2020, 27(2): 172-181.
[2] YANG Shi-yi, ZHANG Feng-feng, FAN Li-cheng, KUANG Shao-long, SUN Li-ning. Multi target coordinated mechanism parameter optimization method for radiotherapy bed[J]. Chinese Journal of Engineering Design, 2016, 23(3): 256-263.