Please wait a minute...
Chinese Journal of Engineering Design  2024, Vol. 31 Issue (5): 592-602    DOI: 10.3785/j.issn.1006-754X.2024.03.225
Optimization Design     
Design analysis and structural parameter optimization for magnetic adsorption module of wall-climbing robot
Pei YANG(),Minglu ZHANG,Lingyu SUN()
School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China
Download: HTML     PDF(4025KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

As a vital component of the magnetic adsorption wall-climbing robot, the structure of the magnetic adsorption module usually affects the overall mass and adsorption stability of the robot. Aiming at the problems of complex magnetic circuit coupling relationship and complicated optimization design of magnetic adsorption modules, a magnetic adsorption module structure optimization method is proposed by combining virtual simulation technology, surrogate model and dung beetle optimization algorithm to improve the efficiency of magnetic force calculation and optimization design process. Firstly, the structure design scheme for the wall-climbing robot was introduced, and through the simulation analysis of the existing Halbach array magnetic circuit modes, it was determined that the three-magnetic circuit mode had relatively high adsorption efficiency. At the same time, the magnetic force simulation model of the magnetic adsorption module was experimentally verified based on the initial parameters, which laid the foundation for establishing subsequent surrogate models. Then, an optimization model with the robot's adsorption stability and structural parameters as constraints and the lightweight of the magnetic adsorption module as objective was established. A fourth-order response surface model between the magnetic force and the structural parameters of the magnetic adsorption module was established by the optimal Latin hypercube design, ANSYS parametric modeling and surrogate model technology, and its credibility was verified. The structural parameter optimization model of the magnetic adsorption module was solved by using the dung beetle optimization algorithm. The results showed that the prediction error of the established surrogate model was tiny, and the relationship between the magnetic force and the structural parameters of the magnetic adsorption module could be well expressed. After optimization, the mass of the magnetic adsorption module was reduced by 12.7%. Finally, the correctness of the optimization process was verified through robot load experiments. The research results can provide reference for the magnetic force analysis and structure optimization of other magnetic adsorption robots.



Key wordswall-climbing robot      magnetic adsorption module      surrogate model      parameter optimization      magnetic circuit simulation     
Received: 26 December 2023      Published: 30 October 2024
CLC:  TP 242.2  
Corresponding Authors: Lingyu SUN     E-mail: yang_p1993@163.com;sunly@hebut.edu.cn
Cite this article:

Pei YANG,Minglu ZHANG,Lingyu SUN. Design analysis and structural parameter optimization for magnetic adsorption module of wall-climbing robot. Chinese Journal of Engineering Design, 2024, 31(5): 592-602.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2024.03.225     OR     https://www.zjujournals.com/gcsjxb/Y2024/V31/I5/592


爬壁机器人磁吸附模块设计分析与结构参数优化

作为磁吸附式爬壁机器人的关键部件,磁吸附模块的结构通常会影响机器人的整体质量及吸附稳定性。针对磁吸附模块磁路耦合关系复杂、优化设计困难等问题,结合虚拟仿真技术、代理模型和蜣螂优化算法提出了一种磁吸附模块结构优化方法,以提高其磁力计算和优化设计过程的效率。首先,介绍了爬壁机器人的结构设计方案,并通过对现有的Halbach阵列磁路模式进行仿真分析,确定了三磁路模式具有相对较高的吸附效率;同时,基于初设参数对磁吸附模块磁力仿真模型进行了实验验证,为后续代理模型的建立奠定了基础。然后,建立了以机器人吸附稳定性和结构参数为约束、以磁吸附模块轻量化为目标的优化模型。采用最优拉丁超立方设计、ANSYS参数化建模以及代理模型技术建立了磁吸附模块磁力与结构参数之间的四阶响应面模型,并对其可信度进行了验证。利用蜣螂优化算法对磁吸附模块的结构参数优化模型进行了求解。结果表明,所建立的代理模型的预测误差很小,能够较好地表征磁吸附模块磁力与结构参数之间的关系;优化后磁吸附模块的质量减小了12.7%。最后,通过机器人负载实验验证了优化过程的正确性。研究结果可为其他磁吸附式机器人的磁力分析与结构优化提供参考。


关键词: 爬壁机器人,  磁吸附模块,  代理模型,  参数优化,  磁路仿真分析 
Fig.1 Overall structure of wall-climbing robot
Fig.2 Structure of four magnetic circuit modes
Fig.3 Variation of magnetic force with air gap distance under different magnetic circuit modes
Fig.4 Structure schematic of magnetic adsorption module with three-magnetic circuit
Fig.5 Optimization strategy for structural parameters of magnetic adsorption module
Fig.6 Variation of magnetic force under different wall thicknesses
设计参数初始值取值范围
最小值最大值
a8512
b16529
c352637
d221230
e114.521.5
t101010
g101010
Table 1 Range of each design parameter of magnetic adsorption module
Fig.7 Force analysis of wall-climbing robot
Fig.8 Minimum magnetic force required to resist three types of instability situations
Fig.9 Experimental platform of magnetic force test for magnetic adsorption module
Fig.10 Comparison of simulated and measured magnetic force values of magnetic adsorption module
Fig.11 Sampling effect of different experimental design methods
样本点a/mmb/mmc/mmd/mme/mmFX)/N
15.35421.4829.8921.4513.26128.570
25.99022.9428.4412.9114.4669.073
38.8897.4236.2221.6418.2487.366
48.04015.1836.1114.557.9365.284
510.72722.7035.8928.5513.43272.450
66.83827.5533.3326.7311.71213.010
77.19216.6435.7817.2720.81142.230
89.0305.7334.6716.5511.3737.808
98.74724.3928.6712.738.9649.399
108.32320.5231.2221.097.59109.780
1111.22220.2736.7816.739.65107.380
126.27321.9734.2226.364.50137.260
1311.36420.0326.5615.0912.5766.402
145.42425.1233.1115.6418.58135.950
1511.0108.1527.4424.737.7666.603
168.18213.4826.7813.0912.2342.979
176.13113.9736.5619.8213.09126.730
186.7685.9729.5614.3616.3528.872
1910.0205.2431.5623.4512.9150.487
2011.64619.7932.6714.1817.3899.943
7911.71721.7327.0024.5512.74141.920
805.63624.8835.4419.098.96124.080
816.41412.2726.1120.0015.4977.611
8211.43410.5830.0022.5519.27104.780
8311.50522.4531.6714.738.4567.949
845.7076.7033.8916.368.2839.014
8510.4448.8836.6723.649.82105.650
865.28313.2427.5625.459.3188.687
878.46517.8526.0025.2710.17113.340
889.24217.1234.4421.2713.94153.140
8911.78817.8534.1124.187.42147.230
9011.9299.3634.5618.7315.8384.310
9111.15211.3034.8927.6417.21172.770
929.4559.8532.4415.8220.3069.653
935.21217.3632.8914.0011.5471.916
9410.79819.0628.8926.185.02119.520
9511.29311.7933.7812.009.9942.234
969.5255.4829.4415.458.7924.149
977.0515.0035.2224.9111.8858.269
9810.86914.4530.5628.9112.06167.910
9911.08110.0929.3312.3615.3240.109
1006.98024.6426.6718.9119.61126.210
Table 2 Partial sample points and corresponding magnetic force simulation values for constructing magnetic force surrogate model
代理模型R2ERMS
2-RSM0.987 30.025 46
4-RSM0.994 40.016 96
Table 3 Precision evaluation index of surrogate models
Fig.12 Comparison of prediction effect of different surrogate models
组别结构参数/mm磁力仿真值/N磁力预测值/N相对误差/%
abcde2-RSM4-RSM2-RSM4-RSM
初始816352211142.92134.53138.445.873.13
测试171329181376.9374.0278.823.782.46
测试2917322114135.27129.75133.104.081.60
测试310.5233525.518256.96245.66248.844.403.16
测试41229373021398.49380.92393.514.411.25
Table 4 Relative error comparison of magnetic force under different structural parameter combinations
Fig.13 Optimization solution process of structural parameters of magnetic adsorption module based on DBO algorithm
参数数值
种群数量/个90
迭代数/次1 000
各子种群数量(滚球∶产卵∶觅食∶偷窃)6∶6∶7∶11
滚球蜣螂缺陷系数0.1
滚球蜣螂常值0.3
滚球、跳舞行为概率0.5
觅食蜣螂常值0.5
Table 5 Main parameters of DBO algorithm
Fig.14 Optimization solution iterative process based on 2-RSM and 4-RSM
结构参数与性能参数初始值优化值
2-RSM4-RSM(取整
a/mm855(5)
b/mm1611.8511.803 9(11.8)
c/mm353737(37)
d/mm2230.0025.568(25.6)
e/mm114.9813.8145(13.8)
mX)/g353.43309.41308.49(308.66)
FX)/N143.00143.00(143.12)
Table 6 Optimization results of structural parameters of magnetic adsorption module
Fig.15 Wall-climbing robot load experiment site
[1]   陈咏华, 孙振国, 张文, 等. 爬壁机器人焊缝高效修形技术研究[J]. 机械工程学报, 2023, 59(9): 12-19. doi:10.3901/jme.2023.09.012
CHEN Y H, SUN Z G, ZHANG W, et al. Research on high efficiency weld modification technology for wall-climbing robot[J]. Journal of Mechanical Engineering, 2023, 59(9): 12-19.
doi: 10.3901/jme.2023.09.012
[2]   刘志辉, 蔡伟, 付兴伟, 等. 一种滚动密封爬壁机器人失效分析[J]. 中国机械工程, 2022, 33(22): 2755-2763, 2771.
LIU Z H, CAI W, FU X W, et al. Failure analysis of a rolling sealed wall climbing robots[J]. China Mechanical Engineering, 2022, 33(22): 2755-2763, 2771.
[3]   王洋, 张小俊, 张明路, 等. 可自适应变曲率立面的分体柔性爬壁机器人设计与分析[J]. 机械工程学报, 2021, 57(3): 49-58. doi:10.3901/jme.2021.03.049
WANG Y, ZHANG X J, ZHANG M L, et al. Design and analysis of split-flexible wall-climbing robot with adaptive variable curvature facade[J]. Journal of Mechanical Engineering, 2021, 57(3): 49-58.
doi: 10.3901/jme.2021.03.049
[4]   姜泽, 王珉, 赵哲, 等. 爬壁机器人发展现状与关键技术研究综述[J]. 包装工程, 2023, 44(12): 29-38, 117, 8.
JIANG Z, WANG M, ZHAO Z, et al. Review on development status and key technologies of wall-climbing robots[J]. Packaging Engineering, 2023, 44(12): 29-38, 117, 8.
[5]   马吉良, 彭军, 郭艳婕, 等. 爬壁机器人研究现状及发展趋势[J]. 机械工程学报, 2023, 59(5): 11-28. doi:10.3901/jme.2023.05.011
MA J L, PENG J, GUO Y J, et al. Research status and development trend of wall climbing robot[J]. Journal of Mechanical Engineering, 2023, 59(5): 11-28.
doi: 10.3901/jme.2023.05.011
[6]   周依霖, 张华, 叶艳辉, 等. 永磁吸附履带式爬壁机器人转向动力特性分析[J]. 机械设计, 2017, 34(2): 56-61.
ZHOU Y L, ZHANG H, YE Y H, et al. Steering dynamic characteristics analysis of permanent magnetic tracked wall-climbing robot[J]. Journal of Machine Design, 2017, 34(2): 56-61.
[7]   LU X R, GUO D H, CHEN Y. Design and optimization of the magnetic adsorption mechanism of a pipeline-climbing robot[J]. Journal of Mechanical Science and Technology, 2021, 35(11): 5161-5171.
[8]   张栋, 杨培, 黄哲轩, 等. 爬壁机器人悬摆式磁吸附机构的设计与优化[J]. 工程设计学报, 2023, 30(3): 334-341.
ZHANG D, YANG P, HUANG Z X, et al. Design and optimization of pendulous magnetic adsorption mechanism for wall-climbing robots[J]. Chinese Journal of Engineering Design, 2023, 30(3): 334-341.
[9]   SAHBEL A, ABBAS A, SATTAR T. Experimental and numerical optimization of magnetic adhesion force for wall climbing robot applications[J]. International Journal of Mechanical Engineering and Robotics Research, 2019, 8(1): 18-24.
[10]   HALBACH K. Strong rare earth cobalt quadrupoles[J]. IEEE Transactions on Nuclear Science, 1979, 26(3): 3882-3884.
[11]   钟道方, 田颖, 张明路. 轮腿式爬壁机器人的永磁吸附装置设计与优化[J]. 工程设计学报, 2022, 29(1): 41-50.
ZHONG D F, TIAN Y, ZHANG M L. Design and optimization of permanent magnet adsorption device for wheel-legged wall-climbing robot[J]. Chinese Journal of Engineering Design, 2022, 29(1): 41-50.
[12]   潘柏松, 张晋, 魏凯, 等. 基于Halbach阵列爬壁机器人永磁轮吸附单元的设计与优化[J]. 浙江工业大学学报, 2015, 43(4): 393-397, 474. doi:10.3969/j.issn.1006-4303.2015.04.009
PAN B S, ZHANG J, WEI K, et al. The optimization of a novel permanent-magnetic wheel adsorption unit for wall-climbing robot based on Halbach array[J]. Journal of Zhejiang University of Technology, 2015, 43(4): 393-397, 474.
doi: 10.3969/j.issn.1006-4303.2015.04.009
[13]   陈勇. Halbach阵列机器人磁吸附单元理论分析与实验研究[D]. 南京: 南京理工大学, 2013.
CHEN Y. Theoretical and experiment research on magnetic adhesion device for wall-climbing robot based on Halbach array[D]. Nanjing: Nanjing University of Science and Technology, 2013.
[14]   JIAO S L, ZHANG X J, ZHANG X, et al. Magnetic circuit analysis of Halbach array and improvement of permanent magnetic adsorption device for wall-climbing robot[J]. Symmetry, 2022, 14(2): 429.
[15]   赵智浩, 陶友瑞, 裴佳星, 等. 履带式爬壁机器人磁吸附单元的参数分析与优化[J]. 机械强度, 2023, 45(3): 626-632.
ZHAO Z H, TAO Y R, PEI J X, et al. Parameter analysis and optimization of magnetic adsorption unit for crawler wall-climbing robot[J]. Journal of Mechanical Strength, 2023, 45(3): 626-632.
[16]   ZHAO Z H, TAO Y R, WANG J, et al. The multi-objective optimization design for the magnetic adsorption unit of wall-climbing robot[J]. Journal of Mechanical Science and Technology, 2022, 36(1): 305-316.
[17]   孙玲. 除锈爬壁机器人壁面行走控制技术研究[D]. 大连: 大连海事大学, 2015.
SUN L. Research on wall travelling control for ship rust removal wall climbing robot[D]. Dalian: Dalian Maritime University, 2015.
[18]   黄哲轩. 石化储罐壁面检测爬壁机器人设计及其特性研究[D]. 天津: 河北工业大学, 2018.
HUANG Z X. Wall-climbing robot design and property study based on surface testing of petrochemical tank[D]. Tianjin: Hebei University of Technology, 2018.
[19]   PALAR P S, SHIMOYAMA K. On efficient global optimization via universal Kriging surrogate models[J]. Structural and Multidisciplinary Optimization, 2018, 57: 2377-2397.
[20]   KEANE A J, VOUTCHKOV I I. Robust design optimization using surrogate models[J]. Journal of Computational Design and Engineering, 2020, 7(1): 44-55.
[21]   张扬. 多参数非线性系统全局敏感性分析与动态代理模型研究[D]. 长沙: 湖南大学, 2014.
ZHANG Y. The study on global sensitivity analysis and dynamic metamodel of multiple-parameters nonlinear system[D]. Changsha: Hunan University, 2014.
[1] Dong ZHANG,Pei YANG,Zhexuan HUANG,Lingyu SUN,Minglu ZHANG. Design and optimization of pendulous magnetic adsorption mechanism for wall-climbing robots[J]. Chinese Journal of Engineering Design, 2023, 30(3): 334-341.
[2] Peng-cheng ZHANG,Jian-ye NIU,Cheng-lei LIU,Jing-ke SONG,Li-peng WANG,Jian-jun ZHANG. Mechanism parameter optimization and trajectory planning of traction lower limb rehabilitation robot[J]. Chinese Journal of Engineering Design, 2022, 29(6): 695-704.
[3] ZHONG Dao-fang, TIAN Ying, ZHANG Ming-lu. Design and optimization of permanent magnet adsorption device for wheel-legged wall-climbing robot[J]. Chinese Journal of Engineering Design, 2022, 29(1): 41-50.
[4] LIU Yong-jiang, PENG Xuan-lin, TANG Xiong-hui, LI Hua, QI Zi-mei. Resonance failure analysis and optimal design of axial cooling fan[J]. Chinese Journal of Engineering Design, 2021, 28(2): 203-209.
[5] LIU Chun-qing, WANG Wen-han. Parameter optimization of generating method spherical precision grinding based on ANN-GA[J]. Chinese Journal of Engineering Design, 2019, 26(4): 395-402.
[6] WANG Ai-lun, LIU Le, LIU Qing-ya. Research on strength reliability of pull rod combined rotor based on Kriging surrogate model[J]. Chinese Journal of Engineering Design, 2019, 26(4): 433-440.
[7] TANG Dong-lin, LI Mao-yang, DING Chao, WEI Zi-bing, HU Lin, YUAN Bo. Research on steering stability of wheeled wall-climbing robot[J]. Chinese Journal of Engineering Design, 2019, 26(2): 153-161.
[8] WEI Chun-yu, CAI Yue, LIU Ming-he, ZHANG Qi, JIA Qian-zhong. Design and simulation of new vibration isolation platform for vehicle medical rescue[J]. Chinese Journal of Engineering Design, 2018, 25(5): 532-538.
[9] LI Yan-kui, LÜ Yan-ming, NI Ming-ming. The wear analysis of precision blasting die for aviation blades based on orthogonal test[J]. Chinese Journal of Engineering Design, 2017, 24(6): 632-637.
[10] TANG Wei, XIE Yan-min, HUANG Ren-yong, ZHANG Fei, PAN Bei-bei. Constitutive parameter inverse for nonisothermal stamping of magnesium alloy based on adaptive SVR-ELM mixture surrogate model[J]. Chinese Journal of Engineering Design, 2017, 24(5): 536-544.
[11] QIU Rui-bin, LEI Fei, CHEN Yuan, WANG Qiong. Research on the method of multi-case topology optimization of frame structure based on the weight ratio[J]. Chinese Journal of Engineering Design, 2016, 23(5): 444-452.
[12] YANG Shi-yi, ZHANG Feng-feng, FAN Li-cheng, KUANG Shao-long, SUN Li-ning. Multi target coordinated mechanism parameter optimization method for radiotherapy bed[J]. Chinese Journal of Engineering Design, 2016, 23(3): 256-263.
[13] LI Zhan-fu, TONG Xin. Modeling and parameter optimization for vibrating screens based on AFSA-SimpleMKL[J]. Chinese Journal of Engineering Design, 2016, 23(2): 181-187.
[14] . Multi-objective optimization software development and application[J]. Chinese Journal of Engineering Design, 2015, 22(3): 262-268.
[15] CUI Kai-Bo, QIN Jun-Qi, DI Chang-Chun, ZHANG Yan-Jun. Research on artillery structural parameter optimization based on ADAMS and CPSO algorithm[J]. Chinese Journal of Engineering Design, 2012, 19(4): 278-282.