Please wait a minute...
Chinese Journal of Engineering Design  2025, Vol. 32 Issue (1): 42-50    DOI: 10.3785/j.issn.1006-754X.2025.04.127
Robotic and Mechanism Design     
Research on environmental sanitation robot formation based on leader-follower and artificial potential field
Yuming XIE1(),Hanfeng YIN2(),Huihui XIAO1
1.Hunan Engineering Research Center of Control Technology and Equipment of Special Robot in Complex Environment, Xiangtan 411104, China
2.College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
Download: HTML     PDF(4858KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Aiming at the problem of poor formation stability of environmental sanitation robots during cluster operations, an innovative formation control method combining the leader-follower strategy and artificial potential field algorithm is proposed. Firstly, according to the structural characteristics of the environmental sanitation robot, its kinematics model was constructed based on the leader-follower strategy. Then, in view of the complex operation environment of environmental sanitation robots, the artificial potential field algorithm was employed for formation obstacle avoidance, and a novel formation transformation strategy was proposed to enable robots to smoothly pass through the working scenarios such as back streets and alleys, so as to realize the cooperative operation of multi-robots. Finally, the simulation experiments were conducted by MATLAB software and the experimental test was carried out in the actual operation scenario. The results showed that the proposed method could effectively facilitate the formation of environmental sanitation robots to avoid obstacles and pass through narrow passage in complex operation scenarios, while achieving stable formation maintenance and flexible transformation. The tracking error of the following robot remained below 0.1 m when the formation was stable, and the experimental results verified the effectiveness of the formation control method. The research results provide reference for the formation control of environmental sanitation robots in different operation scenarios.



Key wordsenvironmental sanitation robot      leader-follower strategy      artificial potential field algorithm      formation control method     
Received: 28 March 2024      Published: 04 March 2025
CLC:  TP 24  
Cite this article:

Yuming XIE,Hanfeng YIN,Huihui XIAO. Research on environmental sanitation robot formation based on leader-follower and artificial potential field. Chinese Journal of Engineering Design, 2025, 32(1): 42-50.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2025.04.127     OR     https://www.zjujournals.com/gcsjxb/Y2025/V32/I1/42


基于领航-跟随及人工势场的环卫机器人编队研究

针对环卫机器人集群作业时存在编队稳定性差的问题,创新性地提出了一种结合领航-跟随策略与人工势场算法的编队控制方法。首先,根据环卫机器人的结构特点,基于领航-跟随策略构建了其运动学模型。然后,针对环卫机器人的复杂作业环境,采用人工势场算法进行编队避障,并提出了全新的编队变换策略,以使机器人能够顺利通过背街小巷等作业场景,从而实现多机器人的协同作业。最后,利用MATLAB软件开展仿真实验并在实际作业场景中开展实验测试。结果表明,所提出的方法可使环卫机器人编队在复杂作业场景中有效避障及通过狭窄通道,同时实现队形的稳定保持与灵活变换;编队稳定时跟随机器人的跟踪误差保持在0.1 m以下,实验结果验证了该编队控制方法的有效性。研究结果为环卫机器人在不同作业场景下的编队控制提供了参考。


关键词: 环卫机器人,  领航-跟随策略,  人工势场算法,  编队控制方法 
Fig.1 Kinematics model of a single environmental sanitation robot
Fig.2 Actual operation formation of environmental sanitation robots
Fig.3 Environmental sanitation robot formation model
Fig.4 Obstacle avoidance process of environmental sanitation robot
Fig.5 Transformation of environmental sanitation robot formation
Fig.6 Motion state of environmental sanitation robot formation during obstacle avoidance
Fig. 7 Motion trajectory of environmental sanitation robot formation during obstacle avoidance
Fig.8 Speed and angular velocity curves of environmental sanitation robot formation during obstacle avoidance
Fig.9 Motion state of environmental sanitation robot formation during transformation
Fig.10 Motion trajectory of environmental sanitation robot formation during transformation
Fig.11 Speed and angular velocity curves of environmental sanitation robot formation during transformation
Fig.12 Tracking error of following robots
Fig.13 Formation of environmental sanitation robots
Fig.14 Structure of environmental sanitation robot
Fig.15 Experimental results of environmental sanitation robot formation operation
[1]   王耀南, 江一鸣, 姜娇, 等. 机器人感知与控制关键技术及其智能制造应用[J]. 自动化学报, 2023, 49(3): 494-513.
WANG Y N, JIANG Y M, JIANG J, et al. Key technologies of robot perception and control and its intelligent manufacturing applications[J]. Acta Automatica Sinica, 2023, 49(3): 494-513.
[2]   ZHANG K T, CHERMPRAYONG P, XIAO F, et al. Aerial additive manufacturing with multiple autonomous robots[J]. Nature, 2022, 609(7928): 709-717.
[3]   张振国, 毛建旭, 谭浩然, 等. 重大装备制造多机器人任务分配与运动规划技术研究综述[J]. 自动化学报, 2024, 50(1): 21-41
ZHANG Z G, MAO J X, TAN H R, et al. A review of task allocation and motion planning for multi-robot in major equipment manufacturing[J]. Acta Automatica Sinica, 2024, 50(1): 21-41.
[4]   邓辅秦, 黄焕钊, 谭朝恩, 等. 结合遗传算法和滚动调度的多机器人任务分配算法[J]. 计算机应用, 2023, 43(12): 3833-3839. doi:10.11772/j.issn.1001-9081.2022121916
DENG F Q, HUANG H Z, TAN C E, et al. Multi-robot task allocation algorithm combining genetic algorithm and rolling scheduling[J]. Journal of Computer Applications, 2023, 43(12): 3833-3839.
doi: 10.11772/j.issn.1001-9081.2022121916
[5]   邓国琛. 无人车多车协同控制技术研究[D]. 济南: 济南大学, 2022: 1-5.
DENG G C. Research on multi vehicle cooperative control technology of unmanned vehicle[D]. Jinan: University of Jinan, 2022: 1-5.
[6]   付雷, 秦一杰, 何顶新, 等. 基于改进人工势场法的多机器人编队避障[J]. 控制工程, 2022, 29(3): 388-396.
FU L, QIN Y J, HE D X, et al. Obstacle avoidance in multi-robot formation based on improved artificial potential field[J]. Control Engineering of China, 2022, 29(3): 388-396.
[7]   PAN Z H, ZHANG C X, XIA Y Q, et al. An improved artificial potential field method for path planning and formation control of the multi-UAV systems[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(3): 1129-1133.
[8]   ZHUANG H C, DONG K L, WANG N, et al. Multi-robot leader grouping consistent formation control method research with low convergence time based on nonholonomic constraints[J]. Applied Sciences, 2022, 12(5): 2300.
[9]   DESAI J P, OSTROWSKI J, KUMAR V. Controlling formations of multiple mobile robots[C]//Proceedings of 1998 IEEE International Conference on Robotics and Automation. Leuven, May 20, 1998.
[10]   黎星华, 刘晓平, 王刚, 等. 面向多智能消防机器人的编队避障控制方法[J]. 机器人, 2024, 46(1): 81-93.
LI X H, LIU X P, WANG G, et al. A formation obstacle-avoidance control method for multiple intelligent firefighting robots[J]. Robot, 2024, 46(1): 81-93.
[11]   王琳, 张庆杰, 陈宏伟. 基于领航者跟随者的群系统保性能编队控制[J]. 北京航空航天大学学报, 2024, 50(3): 1037-1046.
WANG L, ZHANG Q J, CHEN H W. Guaranteed-performance formation control of swarm systems based on leader-follower strategy[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(3): 1037-1046.
[12]   熊勇刚, 付茂林, 李波, 等. 基于领航-跟随法的多机器人编队控制[J]. 机电工程技术, 2024, 53(3): 136-141.
XIONG Y G, FU M L, LI B, et al. Multi-robot formation control based on pilot-following method[J]. Mechanical & Electrical Engineering Technology, 2024, 53(3): 136-141.
[13]   庄红超, 王柠, 董凯伦, 等. 非完整约束大负重比六足机器人多机动态协同编队避障控制策略[J]. 机械工程学报, 2024, 60(1): 284-295. doi:10.3901/jme.2024.01.284
ZHUANG H C, WANG N, DONG K L, et al. Obstacle avoidance control strategy of multi-robot dynamic cooperative formation of large-load-ratio six-legged robot under nonholonomic constraints[J]. Journal of Mechanical Engineering, 2024, 60(1): 284-295.
doi: 10.3901/jme.2024.01.284
[14]   张晓莉, 王张哲. 基于领航-跟随模型的井下多移动机器人编队研究[J]. 矿业研究与开发, 2022, 42(2): 179-182.
ZHANG X L, WANG Z Z. Research on underground multi-mobile robots formation based on leader-follower model[J]. Mining Research and Development, 2022, 42(2): 179-182.
[15]   陈冠星. 动态环境下多机器人编队及避障控制策略研究[D]. 南京: 南京理工大学, 2021: 38-43.
CHEN G X. Research on formation and obstacle avoidance control strategy of multiple robots in dynamic environment[D]. Nanjing: Nanjing University of Science and Technology, 2021: 38-43.
[16]   ZHANG T, DONG D B, DU Z Z, et al. Swarm control based on artificial potential field method with predicted state and input threshold[J]. Engineering Applications of Artificial Intelligence, 2023, 125: 106567.
[17]   ZHANG W, XU G J, SONG Y, et al. An obstacle avoidance strategy for complex obstacles based on artificial potential field method[J]. Journal of Field Robotics, 2023, 40(5): 1231-1244.
[18]   杨立炜, 李萍, 权赫, 等. 基于蚁群混合人工势场法的多机器人编队运动[J]. 电光与控制, 2024, 31(9): 52-57, 80.
YANG L W, LI P, QUAN H, et al. Motion of multi-robot formation based on ACO and APF[J]. Electronics Optics & Control, 2024, 31(9): 52-57, 80.
[19]   辛鹏, 王艳辉, 刘晓立, 等. 优化改进RRT和人工势场法的路径规划算法[J]. 计算机集成制造系统, 2023, 29(9): 2899-2907.
XIN P, WANG Y H, LIU X L, et al. Path planning algorithm based on optimize and improve RRT and artificial potential field[J]. Computer Integrated Manufacturing Systems, 2023, 29(9): 2899-2907.
[20]   时培成, 陈旭, 杨爱喜, 等. 4WID-4WIS智能车阿克曼转向轨迹规划及位置估算[J]. 工程设计学报, 2022, 29(2): 123-132.
SHI P C, CHEN X, YANG A X, et al. Ackerman steering trajectory planning and position estimation of 4WID-4WIS intelligent vehicle[J]. Chinese Journal of Engineering Design, 2022, 29(2): 123-132.
[1] Chao QIN,Donglin TANG,Dongpan YOU,Chao DING,Sheng RAO,Yuanyuan HE. Research on navigation of wall-climbing robot based on improved RTAB-Map algorithm[J]. Chinese Journal of Engineering Design, 2025, 32(1): 32-41.
[2] Pei YANG,Minglu ZHANG,Lingyu SUN. Design analysis and structural parameter optimization for magnetic adsorption module of wall-climbing robot[J]. Chinese Journal of Engineering Design, 2024, 31(5): 592-602.
[3] Xin LIU,Feihu LI. Optimization design method for kinematic stability of hexapod robot based on probability-interval hybrid model[J]. Chinese Journal of Engineering Design, 2024, 31(5): 585-591.
[4] Huixuan ZHU,Guangze CUI,Bingnan LI,Kai GUO,Wei WANG,Song LI. Workspace analysis of in situ printing system for repairing large-skin wounds[J]. Chinese Journal of Engineering Design, 2024, 31(4): 529-537.
[5] Boyang ZHANG,Yongli FENG,Jinfeng HUANG,Baowang HUANG. Design of new water-cooled wall robot and research of its electro permanent magnet wheel[J]. Chinese Journal of Engineering Design, 2024, 31(4): 446-455.
[6] Zhe XU,Wei DAI,Yu CAO,Yongguo LI,Shun ZHANG. Improved design and longitudinal pitch optimization of underdriven ROV[J]. Chinese Journal of Engineering Design, 2024, 31(4): 483-490.
[7] Qingsong YU,Xiangrong XU,Yinzhen LIU. Pixel-level grasping pose detection for robots based on Transformer[J]. Chinese Journal of Engineering Design, 2024, 31(2): 238-247.
[8] Zhou HE,Yang WANG,Xiangyu JIANG,Zhaoxi HONG,Lili HE,Yixiong FENG. Collaborative design of complex product lifecycle value chain by fusing multi-agent demand frequency characteristics[J]. Chinese Journal of Engineering Design, 2024, 31(1): 1-9.
[9] Rui ZHANG,Wanyue JIANG. Mobile robot target following system based on visual tracking and autonomous navigation[J]. Chinese Journal of Engineering Design, 2023, 30(6): 687-696.
[10] Yaqin TIAN,Menghui HU,Wentao LIU,Yinzhi HOU. Path planning of autonomous mobile robot based on jump point search-genetic algorithm[J]. Chinese Journal of Engineering Design, 2023, 30(6): 697-706.
[11] Wanbo ZHAO,Saixuan CHEN,Guanwu JIANG,Rong LI,Yu ZHANG. Structural design and kinematics analysis of new cable-driven minimally invasive surgical instrument[J]. Chinese Journal of Engineering Design, 2023, 30(6): 657-666.
[12] Mingshuo LI,Lingshuai MENG,Haitao GU,Xinxing CAO,Mingyuan ZHANG. Design and implementation of launch and recovery system for AUV based on USV[J]. Chinese Journal of Engineering Design, 2023, 30(5): 650-656.
[13] Qiqi LI,Xiangrong XU,Hui ZHANG. Sliding mode trajectory tracking control of manipulator based on adaptive neural network[J]. Chinese Journal of Engineering Design, 2023, 30(4): 512-520.
[14] Guiliang CHEN,Zihao LI,Chao CAI,Yongchao LI,Dong YANG. Design and mechanism optimization of lower limb exoskeleton based on human dynamics analysis[J]. Chinese Journal of Engineering Design, 2023, 30(3): 362-371.
[15] Dong ZHANG,Pei YANG,Zhexuan HUANG,Lingyu SUN,Minglu ZHANG. Design and optimization of pendulous magnetic adsorption mechanism for wall-climbing robots[J]. Chinese Journal of Engineering Design, 2023, 30(3): 334-341.