Please wait a minute...
Chinese Journal of Engineering Design  2024, Vol. 31 Issue (1): 1-9    DOI: 10.3785/j.issn.1006-754X.2023.03.207
Product Innovation Design     
Collaborative design of complex product lifecycle value chain by fusing multi-agent demand frequency characteristics
Zhou HE1,2(),Yang WANG3,Xiangyu JIANG4,Zhaoxi HONG4,5(),Lili HE3,Yixiong FENG4,6
1.Sussex Artificial Intelligence Institute, Zhejiang Gongshang University, Hangzhou 310012, China
2.Hangzhou Zhouli Data Technology Co. , Ltd. , Hangzhou 310019, China
3.School of Computer Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
4.State Key Laboratory of Fundamental Components of Fluid Power and Mechatronic systems, Zhejiang University, Hangzhou 310058, China
5.Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China
6.State Key Laboratory of Public Big Data, Guizhou University, Guiyang 550025, China
Download: HTML     PDF(3642KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Complex products with high turnover and short shelf life are characterized by a higher order frequency. Traditional value chain design is mostly based on the time series of order data of complex products and the impact of sales volume on sales cycle, while ignoring the detail information contained in the order frequency, which is difficult to accurately capture the rapidly changing supply and demand relationship between multi-agents. In order to solve this problem, a collaborative design method of complex product lifecycle value chain fusing multi-agent demand frequency characteristics was proposed. Firstly, the frequency sequence extraction method of gated convolution was used to identify the multi-agent requirement; Secondly, the Transformer time series prediction model based on frequency segmentation was integrated into the order frequency information, and the lifecycle value chain was built according to the improved time series frequency multi-head self-attention (seq-fre multi-head attention) structure. The time series and frequency characteristics of different segments corresponded to different attention heads to realize the fusion of multi-stage time series and frequency features; Finally, the new value chain collaborative design method was applied to the multi-agent demand prediction problem of a complex product, and experimental verification was carried out. The result showed that the proposed value chain collaborative design method fusing demand frequency features has high prediction accuracy and good application prospects.



Key wordsvalue chain      collaborative design      time series prediction      Transformer      frequency feature     
Received: 13 October 2023      Published: 04 March 2024
CLC:  TP 24  
Corresponding Authors: Zhaoxi HONG     E-mail: zh277@sussex.ac.uk;hzhx@zju.edu.cn
Cite this article:

Zhou HE,Yang WANG,Xiangyu JIANG,Zhaoxi HONG,Lili HE,Yixiong FENG. Collaborative design of complex product lifecycle value chain by fusing multi-agent demand frequency characteristics. Chinese Journal of Engineering Design, 2024, 31(1): 1-9.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2023.03.207     OR     https://www.zjujournals.com/gcsjxb/Y2024/V31/I1/1


融合多主体需求频率特征的复杂产品全生命周期价值链协同设计

高周转率和短保质期的复杂产品具有较高订单频率的特征。传统的价值链设计大多基于复杂产品订单数据的时序和销量对销售周期的影响,忽略了其订单频率中蕴含的细节信息,因而难以准确捕捉多主体间快速变化的供需关系。为了解决这一问题,提出了一种融合多主体需求频率特征的复杂产品全生命周期价值链协同设计方法。首先,采用门控卷积的频率序列提取方法识别多主体需求;其次,将基于频率分段的Transformer时序预测模型融合于订单频率信息,根据改进的时序-频率多头自注意力(seq-fre multi-head attention)结构建立全生命周期价值链,不同分段的时序和频率特征对应不同的注意力头,以实现多段时序和频率特征的融合;最后,将新型价值链协同设计方法应用于某复杂产品多主体需求预测问题,进行实验验证。研究表明,所提出的融合需求频率特征的价值链协同设计方法预测准确度较高,具有很好的应用前景。


关键词: 价值链,  协同设计,  时序预测,  Transformer,  频率特征 
Fig.1 Basic path of value chain evolution and upgrading for complex product manufacturing enterprise
Fig.2 Structure of SFTransformer model
Fig.3 Structure of one-dimensional gated convolution
Fig.4 Input network for feature data sequences
Fig.5 Structure of timing-frequency multi-head self-attention module
Fig.6 Sales dataset of a complex product manufacturing enterprise
参数量值
batchSize32
学习率0.000 5
训练数200轮
多头注意力6个
隐藏数16层
Dropout0.05
优化器Adam
Table 1 SFTransformer model parameter settings
预测长度评价指标VAR模型LSTM模型Transformer模型SFTransformer模型
4ESM0.1910.1750.0980.084
EMA0.2010.1970.1150.102
ERSM0.4370.4180.3130.290
12ESM0.3970.3560.1980.165
EMA0.4090.3880.2250.201
ERSM0.7300.5960.4450.406
Table 2 Comparison of prediction performance of different models
Fig.7 Prediction results of product sales volume by each model
[1]   杨海民,潘志松,白玮.时间序列预测方法综述[J].计算机科学,2019,46(1):21-28. doi:10.11896/j.issn.1002-137X.2019.01.004
YANG H M, PAN Z S, BAI W. Review of time series prediction methods[J]. Computer Science, 2019, 46(1): 21-28.
doi: 10.11896/j.issn.1002-137X.2019.01.004
[2]   王静,曹春正.基于贝叶斯分层自回归时空模型的北京PM2.5预测[J].南京信息工程大学学报(自然科学版),2023,15(1):34-41.
WANG J, CAO C Z. Prediction of PM2.5 concentration in Beijing based on Bayesian hierarchical autoregressive spatio-temporal model[J]. Journal of Nanjing University of Information Science and Technology (Natural Science Edition), 2023, 15(1): 34-41.
[3]   陈然.指数平滑与自回归融合预测模型及应用研究[D]. 阜新:辽宁工程技术大学,2021.
CHEN R. Index smoothing and autoregressive fusion forecasting model and its empirical study[D]. Fuxin: Liaoning Technical University, 2021.
[4]   余廷芳,张浩杰.基于SVM和RBF神经网络的CFB NOx生成预测模型[J].计算机仿真,2020,37(9):209-213. doi:10.3969/j.issn.1006-9348.2020.09.043
YU T F, ZHANG H J. NOx generation prediction model of coal-fired boiler based on SVM and RBF neural network[J]. Computer Simulation, 2020, 37(9): 209-213.
doi: 10.3969/j.issn.1006-9348.2020.09.043
[5]   高塔.基于改进贝叶斯网络的高维数据本地差分隐私方法的研究[D].北京:北京交通大学,2021.
GAO T. Research on local differential privacy method for high-dimensional data based on improved Bayesian network[D]. Beijing: Beijing Jiaotong University, 2021.
[6]   MNIH V, HEESS N, GRAVES A, et al. Recurrent models of visual attention[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge. Cambridge, Massachusetts, USA: MIT Press, 2014: 2204-2212.
[7]   武晋鹏.基于样本精选与BERT模型引导的图像情感分析研究[D].南昌:华东交通大学,2021.
WU J P. Image sentiment analysis based on sample refinement and BERT guided[D]. Nanchang: East China Jiaotong University, 2021.
[8]   XIANG Y, FOX D. DA-RNN: semantic mapping with data associated recurrent neural networks[C]//13th Conference on Robotics-Science and Systems, Cambridge, Massachusetts, Jul. 12-16, 2017.
[9]   QIN Y, SONG D, CHEN H, et al. A dual-stage attention-based recurrent neural network for time series prediction[EB/OL]. [2023-10-06]..
[10]   HOCHREITER S. Long short-term memory[J]. Neural Computation, 1997(9): 1735-1780.
[11]   SESTI N, GARAU-LUIS J J, CRAWLEY E, et al. Integrating LSTMs and GNNs for COVID-19 forecasting[J]. arXiv preprint arXiv:, 2021.
[12]   王素.基于深度学习的时间序列预测算法研究与应用[D].成都:电子科技大学,2022.
WANG S. Research and application of time series prediction algorithm based on deep learning[D]. Chengdu: University of Electronic Science and Technology of China, 2022.
[13]   CHO K, VAN MERRIENBOER B, BAHDANAU D, et al. On the properties of neural machine translation: Encoder-Decoder approaches[EB/OL]. [2023-10-06]. .
[14]   VASWANI A, SHAZEER N, PARMAR N. Attention is all you need[EB/OL]. [2023-10-06]..
[15]   LIN L, LUO H, HUANG R, et al. Recurrent models of visual co-attention for person re-identification[J]. IEEE Access, 2019, 7: 8865-8875.
[16]   陈超.基于神经网络的多变量时间序列预测[D].成都:电子科技大学,2022.
CHEN C. Multivariate time prediction based on neural network[D]. Chengdu: University of Electronic Science and Technology of China, 2022.
[17]   MIKOLOV T, SUTSKEVER I, KAI C, et al. Distributed representations of words and phrases and their compositionality[C]//NIPS'13: Proceedings of the 26th International Conference on Neural Information Processing Systems: Volume 2. New York: ACM, 2013: 3111-3119.
[18]   WANGA R, LOUA J, JIANGA Y. Session-based recommendation with time-aware neural attention network[J]. Expert Systems with Applications, 2022, 210: 118395.
[19]   陈士超,郁滨.面向术语抽取的双阈值互信息过滤方法[J].计算机应用,2011,31(4):1070-1073. doi:10.3724/sp.j.1087.2011.01070
CHEN S C, YU B. Method of mutual information filtration with dual-threshold for term extraction[J]. Journal of Computer Applications, 2011, 31(4): 1070-1073.
doi: 10.3724/sp.j.1087.2011.01070
[20]   曹昀炀.基于Transformer的选股因子挖掘[D].上海:华东师范大学,2022.
CAO Y Y. Based on Transformer stock factor construction[D]. Shanghai: East China Normal University, 2022.
[1] Biao MA,Hui-bin QIN,Yi FENG,Xu-ri BAI,Jia-yi XIN. Design and experimental study of wheel amplitude transformer for rotary ultrasonic internal grinding[J]. Chinese Journal of Engineering Design, 2023, 30(1): 117-126.
[2] WANG Ying-long, LIU Ai-lian, ZHAI Shao-lei, ZHU Quan-cong, GU Hong-bo, LI Chuan. Research on application of fundamental wave extraction algorithm based on adaptive frequency tracking[J]. Chinese Journal of Engineering Design, 2018, 25(1): 56-61.
[3] LIANG Xin, LV Ming, WANG Shi-ying, QIN Hui-bin. Design of longitudinal-flexural coupling vibration transformer with large amplitude used in gear ultrasonic machining[J]. Chinese Journal of Engineering Design, 2015, 22(2): 172-177.
[4] QIN Hui-Bin, LV Ming , WANG Shi-Ying, SHE Yin-Zhu. Design and experiment research of longitudinal vibration system in gear ultrasonic machining[J]. Chinese Journal of Engineering Design, 2013, 20(2): 140-145.
[5] SHE Yin-Zhu, LV Ming , WANG Shi-Ying. Research and design of bending vibration transformer in ultrasonic gear honing[J]. Chinese Journal of Engineering Design, 2011, 18(6): 471-476.
[6] ZHANG You-Liang, WANG Hui-Fen. Key technologies and system im plementation of distributed collaborative product design& manufacturing[J]. Chinese Journal of Engineering Design, 2002, 9(2): 53-59.