Please wait a minute...
Chinese Journal of Engineering Design  2018, Vol. 25 Issue (1): 56-61    DOI: 10.3785/j.issn.1006-754X.2018.01.008
    
Research on application of fundamental wave extraction algorithm based on adaptive frequency tracking
WANG Ying-long1, LIU Ai-lian1, ZHAI Shao-lei2, ZHU Quan-cong2, GU Hong-bo3, LI Chuan1
1. College of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China;
2. Electric Power Research Institute, Yunnan Power Grid Limited Liability Corporation, Kunming 650217, China;
3. Nanjing Dandick Electric Instrument Company Limited, Nanjing 210049, China
Download: HTML     PDF(5485KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to eliminate the influence of spectrum leakage and fence effect on the fundamental wave extracting, extract the fundamental component quickly and accurately, and finish the accurate calculation of the ratio difference and the angle difference, the fundamental wave extraction algorithm based on adaptive frequency tracking was used in the transformer calibrator automatic verification system to extract the fundamental component. In the automatic verification process, the calibrator checked the output signal of the verification device and extracted the fundamental component of the signal, then calculated the ratio difference and the angle difference. The system PC compared the calculated results to determine the verification effect of the transformer calibrator. The simulation experiment showed that the fundamental wave extraction algorithm based on adaptive frequency tracking could steadily track the frequency which changed slowly and the tracking error could be controlled between 0 to 0.02 Hz. The test accuracy of the ratio difference and the angle difference with the algorithm could reach 0.002 8% and 0.012% respectively, so the system calibration accuracy could reach 0.05 level. The test results indicated the algorithm could track and record the fluctuation of the grid frequency at 50, 50.5 Hz in real time, and overcome the fundamental frequency of the fundamental frequency caused by the fluctuation, which greatly improve the accuracy of the fundamental component extraction. The research results show that the fundamental wave extraction algorithm has a certain effectiveness and practicability in the verification of the transformer calibrator.



Key wordstransformer calibrator automatic verification system      adaptive frequency tracking      frequency changed slowly      ratio difference      angle difference      test accuracy     
Received: 25 July 2017      Published: 28 February 2018
CLC:  TH7  
Cite this article:

WANG Ying-long, LIU Ai-lian, ZHAI Shao-lei, ZHU Quan-cong, GU Hong-bo, LI Chuan. Research on application of fundamental wave extraction algorithm based on adaptive frequency tracking. Chinese Journal of Engineering Design, 2018, 25(1): 56-61.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2018.01.008     OR     https://www.zjujournals.com/gcsjxb/Y2018/V25/I1/56


基于自适应频率跟踪的基波提取算法应用研究

为了消除基波提取中频谱泄露和栅栏效应的影响,实现快速准确地提取基波分量,完成校验仪比差、角差的精确计算,在互感器校验仪自动检定系统中采用基于自适应频率跟踪的基波提取算法来完成基波提取。在互感器校验仪自动检定系统自动检定的过程中,待检校验仪采集检定装置输出的信号并提取信号的基波分量,计算出比差、角差值。系统上位机对计算结果进行比较分析,判定出该待检校验仪对互感器的检定效果。仿真实验表明,该基波提取算法可以稳定地跟踪频率缓变,跟踪误差控制在0~0.02 Hz之间;该检定系统对比差和角差的检定精度分别达到0.002 8%和0.012%,即系统检定精度可以达到0.05级。检定结果表明该算法可以实时跟踪和记录电网频率为50,50.5 Hz时的微小波动状况,同时克服因波动引起的基波频率缓变,从而大大提高基波分量提取的准确性。研究结果表明该基波提取算法在互感器校验仪检定工作中具有一定的有效性和实用性。


关键词: 互感器校验仪自动检定系统,  自适应频率跟踪,  频率缓变,  比差,  角差,  检定精度 
[1] 包玉树,陈威,李军,等.全自动互感器校验仪整体检定系统设计及应用[J].电测与仪表,2012,49(7):41-44. BAO Yu-shu, CHEN Wei, LI Jun, et al. The design and application of automatic transformer calibrator overall test system[J]. Electrical Masurement & Instrumentation, 2012, 49(7):41-44.
[2] 朱枫,陈跃东,舒圣焱,等.基于FPGA的高精度正弦波信号源设计[J].井冈山大学学报(自然科学版),2015,36(1):56-60. ZHU Feng, CHEN Yue-dong, SHU Sheng-yan, et al. Design of high-accuracy sine wave signal generator based on FPGA[J]. Journal of Jinggangshan University (Natural Science), 2015, 36(1):56-60.
[3] 刘庆余.互感器校验仪整体检定的述评(上)[J].电测与仪表,2003,40(3):12-17. LIU Qing-yu. Evaluation of whole certification of transformer calibrator[J]. Electrical Measurement& Instrumentation, 2003, 40(3):12-17.
[4] 李一泉,何奔腾.一种基于傅氏算法的高精度测频方法[J].中国电机工程学报,2005,26(2):78-81. LI Yi-quan, HE Ben-teng. A high-accuracy algorithm for measuring frequency of power system based on Fourier filter[J]. Proceedings of the CSEE, 2005, 26(2):78-81.
[5] MING Z, KAICHENG L, YISHENG H, et al. A high efficient compression method for power quality applications[J]. IEEE Transactions on Instrumentation and Measurement, 2011, 60(6):1976-1985.
[6] 海志华,张旭飞,钱辉敏,等.基于DSP的三相组合互感器校验仪的设计[J].自动化与仪器仪表,2015(1):97-99. HAI Zhi-hua, ZHANG Xu-fei, QIAN Hui-min, et al. Design of three-phase combined transformer verifier based on DSP[J]. Automation and Instrumentation, 2015(1):97-99.
[7] KARIMI-GHARTEMANI M, IRAVANI M R. A nonlinear adaptive filter for online signal analysis in power systems:applications[J]. IEEE Power & Energy Society, 2002, 22(1):72.
[8] 孙旭霞,郭永胜.基于小波-卡尔曼滤波的基波分量提取[J].电力系统及其自动化学报,2012,24(4):93-99. SUN Xu-xia, GUO Yong-sheng. Wavelet-based Kalman filter for fundamental component[J]. Proceedings of the CSU-EPSA, 2012, 24(4):93-99.
[9] 刘江锋.基于DSP的互感器校验仪设计及实现[D].武汉:武汉理工大学自动化学院,2004:46-47. LIU Jiang-feng. Design and realization of transformer calibrator based on DSP[D]. Wuhan:Wuhan University of Technology, School of Automation, 2004:46-47.
[10] 吕思颖,裴旵,秦昕,等.基于小波多尺度分析和Kalman滤波的微机保护算法[J].电力系统保护与控制,2015,43(21):54-59. LÜ Si-ying, PEI Chan, QIN Xin, et al. Microprocessor-based protection algorithm based on wavelet multi-scale analysis and Kalman filter[J]. Power System Protection and Control, 2015, 43(21):54-59.
[11] 梅永,王柏林.降阶快速傅里叶变换算法在电力系统谐波分析中的应用[J].电网技术,2010,34(11):117-120. MEI Yong, WANG Bo-lin.Application of order-reducing Fourier transform algorithm in power system harmonics analysis[J]. Power System Technology, 2010, 34(11):117-120.
[12] BELEGA D, DALLET D, PETRI D. Statistical description of the sine-wave frequency estimator provided by the interpolated DFT method[J]. Measurement, 2012, 45(1):109-117.
[13] 卢珞先,任立志,张蓬鹤,等.电子式互感器校验仪的算法研究[J].电力系统保护与控制,2009,37(2):58-64. LU Luo-xian, REN Li-zhi, ZHANG Peng-he, et al. Research of arithmetic in electronic transformer calibrator[J]. Power System Protection and Control, 2009, 37(2):58-64.
[14] 温和,滕召胜,黎福海,等.改进加窗频谱峰值拟合算法及谐波分析应用[J].电工技术学报,2011,26(10):8-16. WEN He, TENG Zhao-sheng, LI Fu-hai, et al. Improved windowed spectral-peaks polynomial fitting algorithm and its application in power harmonic analysis[J]. Transactions of China Electrotechnical Society, 2011, 26(10):8-16.
[15] 温和,滕召胜,王永,等.改进加窗插值FFT动态谐波分析算法及应用[J].电工技术学报,2012,27(12):270-278. WEN He, TENG Zhao-sheng, WANG Yong, et al. Improved windowed interpolation FFT algorithm and application for power harmonic analysis[J]. Transactions of China Electrotechnical Society, 2012, 27(12):270-278.
[16] 张斌,张东来.电力系统自适应基波提取与频率跟踪算法[J].中国电机工程学报,2011,31(25):81-89. ZHANG Bin, ZHANG Dong-lai. Adaptive fundamental component extraction and frequency tracking algorithm for power systems[J]. Proceedings of the CSEE, 2011, 31(25):81-89.
[17] YU Sun-li, GU Jyh-cherng. Removal of decaying DC incurrent and voltage signals using a modified Fourier filter algorithm[J]. IEEE Transactions on Power Delivery, 2001, 16(3):372-379.
[18] 傅中君,周根元,陈鉴富,等.基于准同步DFT的非整数谐波分析算法[J].仪器仪表学报,2012,33(1):235-240. FU Zhong-jun, ZHOU Gen-yuan, CHEN Jian-fu, et al. Non-integral harmonic analysis algorithm based on quasi-synchronous DFT[J]. Chinese Journal of Scientific Instrument, 2012, 33(1):235-240.
[1] WEI Jian-bao, LI Song-mei, XU Yu-tian. Analysis of torsional vibration characteristics of tripod-ball cage double universal coupling[J]. Chinese Journal of Engineering Design, 2021, 28(4): 458-465.