Please wait a minute...
Chin J Eng Design  2022, Vol. 29 Issue (5): 607-615    DOI: 10.3785/j.issn.1006-754X.2022.00.069
Whole Machine and System Design     
Design of automatic collection device for insect flight information
Gu-yue LU1(),Qiang XING1(),Wei ZHAO1,Lei MA2,Xiao-ping ZHANG1,Wen-bo WANG3
1.School of Mechanical Engineering, Nantong University, Nantong 226019, China
2.School of Information Science and Technology, Nantong University, Nantong 226019, China
3.College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Download: HTML     PDF(3110KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Aiming at the problems of large amount of data collection, low collection efficiency and binding experimental objects existing in the current insect flight information collection methods, an automatic collection device based on visual inspection technology was designed. The device mainly included obstacle channel module, motion trigger acquisition module, flight path information module and automatic acquisition control system. Firstly, gap controller was designed according to the requirements of the control function, and closed-loop control was realized by using hardware such as laser ranging sensor and stepping motor; secondly, the STM32 microcontroller was used as control terminal, and the Blackfly S USB3 high-speed camera was triggered by using motion direction detection algorithm to realize the sequence image acquisition of insects in the specified motion direction; then, using the open-source computer vision library OpenCV to analyze the collected sequence images and obtain the flight path information of insects; finally, the embedded control system coordinated the communication between modules to achieve the design requirements of efficient and stable acquisition of insect flight information. In order to verify the applicability and accuracy of the device, Apis cerana was selected for the gap crossing experiment. The experimental results showed that in a static environment, the device could obtain complete and clear flight sequence images. The average accuracy rate reached 73.24%. The acquisition performance was stable, which effectively improved the acquisition efficiency. By analyzing the flight path information of honeybee, it is inferred that the mechanism of gap recognition is related to the amplitude and speed of its lateral movement, which provides support for in-depth research on the flight mechanism of Apis cerana.



Key wordsautomatic collection device      honeybee behavior      image acquisition      design     
Received: 03 December 2021      Published: 02 November 2022
CLC:  TP 242  
Corresponding Authors: Qiang XING     E-mail: 2009310009@stmail.ntu.edu.cn;meexq@ntu.edu.cn
Cite this article:

Gu-yue LU,Qiang XING,Wei ZHAO,Lei MA,Xiao-ping ZHANG,Wen-bo WANG. Design of automatic collection device for insect flight information. Chin J Eng Design, 2022, 29(5): 607-615.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2022.00.069     OR     https://www.zjujournals.com/gcsjxb/Y2022/V29/I5/607


昆虫飞行信息自动化采集装置的设计

针对现有昆虫飞行信息采集方法中存在的采集数据量大、采集效率低和束缚实验对象等问题,设计了一种基于视觉检测技术的自动化采集装置。该装置主要包括障碍通道模块、运动触发采集模块、飞行轨迹信息模块和自动采集控制系统。首先,根据控制功能的需求设计了间隙控制器,采用激光测距传感器和步进电机等硬件实现了闭环控制;其次,采用STM32微控制器为控制终端,并结合运动方向检测算法触发Blackfly S USB3高速相机,实现昆虫在指定运动方向的序列图像采集;然后,利用开源计算机视觉库OpenCV分析采集的序列图像,获取昆虫的飞行轨迹信息;最后,通过嵌入式控制系统协调各模块之间的通信,以达到高效、稳定获取昆虫飞行信息的设计要求。为了验证该装置的适用性和准确率,选取中华蜜蜂进行穿越间隙的实验,实验结果表明:在静态环境中,该装置能获取完整、清晰的飞行序列图像,平均准确率达到73.24%,采集性能稳定,有效提升了采集效率。通过分析蜜蜂的飞行轨迹信息,推断出其识别间隙的机制与横向运动的幅度和速度存在联系,这为深度研究蜜蜂的飞行机制提供了支持。


关键词: 自动化采集装置,  蜜蜂行为学,  图像采集,  设计 
Fig.1 Structure of automatic collection device for insect flight information
Fig.2 Structure of gap controller
Fig.3 Comparison of images before and after infrared light compensation
Fig.4 Composition of motion trigger acquisition module
Fig.5 Process of obtaining insect flight path information
Fig.6 Structure block diagram of automatic acquisition control system
Fig.7 Hardware composition of automatic acquisition control system
Fig.8 Software design process of automatic acquisition control system
Fig.9 Experiment scene of automatic collection of honeybee flight information
设定间距/mm实验序号工作噪声/dB实测间距/mm误差值/mm
20146.420.540.54
245.219.41-0.59
30150.330.950.95
247.931.541.54
35151.736.181.18
252.134.04-0.96
40153.439.25-0.75
255.241.361.36
平均值50.27531.66-0.98
Table 1 Test results of noise and control accuracy of automatic collection device for honeybee flight information
障碍间距/mm采集样品数/份准确采用样品数/份采集准确率/%
单目标多目标总计
平均值8823.54164.573.24
208515445969.41
308922436572.03
358725406574.71
409132376975.82
Table 2 Results of honeybee gap crossing experiment
Fig.10 Honeybee flight path
Fig.11 Longitudinal and transverse velocity ratio of honeybee under different obstacle distances
障碍间距/mm纵向平均速比变化率/%横向平均速比变化率/%
前阶段后阶段前阶段后阶段
201.100.82280.781.0931
301.120.87251.030.8419
350.951.07121.180.8335
401.011.0221.090.7237
Table 3 Longitudinal and transverse average velocity ratio of honeybee under different obstacle distances
Fig.12 Honeybee flight path in different stages of the experiment
[1]   程宏宝.仿蝴蝶飞行器总体设计与控制仿真[D].南京:南京航空航天大学,2020:1-63.
CHENG Hong-bao. Overall design and control simulation of a butterfly-shaped aircraft[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020: 1-63.
[2]   梁友鉴,赵杰亮,阎绍泽,等.基于蜜蜂腹部变体机制的空天飞行器仿生变体头锥设计[J].机械工程学报,2020,56(5):47-54. doi:10.3901/jme.2020.05.047
LIANG You-jian, ZHAO Jie-liang, YAN Shao-ze, et al. Bionic design of morphing nose cone for aerospace vehicle based on the deformable mechanism of honeybee abdomen[J]. Journal of Mechanical Engineering, 2020, 56(5): 47-54.
doi: 10.3901/jme.2020.05.047
[3]   THURROWGOOD S, MOORE R, SOCCOL D, et al. A biologically inspired, vision-based guidance system for automatic landing of a fixed-wing aircraft[J]. Journal of Field Robotics, 2014, 31(4): 699-727. doi:10.1002/rob. 21527
doi: 10.1002/rob. 21527
[4]   LIU H, RAVI S, KOLOMENSKIY D, et al. Biomechanics and biomimetics in insect-inspired flight systems[J]. Philosophical Transactions of the Royal Society B, 2016, 371: 20150390. doi: 10.1098/rstb. 2015.0390
doi: 10.1098/rstb. 2015.0390
[5]   DOUSSOT C, BERTRAND O, EGELHAAF M. Visually guided homing of bumblebees in ambiguous situations: A behavioural and modelling study[J]. PLoS Computational Biology, 2020, 16(10): 1553-7358. doi: 10.1371/journal.pcbi.1008272
doi: 10.1371/journal.pcbi.1008272
[6]   DOUSSOT C, BERTRAND O, EGELHAAF M. The critical role of head movements for apatial representation during bumblebees learning flight[J]. Frontiers in Behavioral Neuroscience, 2021, 14(1): 1-16. doi: 10.3389/fnbeh.2020.606590
doi: 10.3389/fnbeh.2020.606590
[7]   SRINIVASAN M. Small brains, smart computations: Vision and navigation in honeybees, and applications to robotics[J]. International Congress Series, 2006, 1291: 30-37. doi:10.1016/j.ics.2006.01.055
doi: 10.1016/j.ics.2006.01.055
[8]   BRAUN E, DITTMAR L, BOEDDEKER N, et al. Prototypical components of honeybee homing flight behavior depend on the visual appearance of objects surrounding the goal[J]. Frontiers in Behavioral Neuroscience, 2012, 6(1): 1-16. doi:10.3389/fnbeh. 2012.00001
doi: 10.3389/fnbeh. 2012.00001
[9]   刘晶,汪超,谢鹏,等.基于PD控制的仿昆虫扑翼样机研制[J].航空学报,2020,41(9):111-122. doi:10.7527/S1000-6893.2020.23678
LIU Jing, WANG Chao, XIE Peng, et al. Development of insect-like flapping wing micro air vehicle based on PD control[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(9): 111-122.
doi: 10.7527/S1000-6893.2020.23678
[10]   叶锦涛,刘凤丽,郝永平,等.一种超低空飞行的仿生扑翼飞行器的设计及分析[J].工程设计学报,2021, 28(4):473-479. doi:10.3785/j.issn.1006-754X.2021.00.052
YE Jin-tao, LIU Feng-li, HAO Yong-ping, et al. Design and analysis of a bionic flapping wing aircraft flying at ultra-low altitude[J]. Chinese Journal of Engineering Design, 2021, 28(4): 473-479.
doi: 10.3785/j.issn.1006-754X.2021.00.052
[11]   NARANJO S. Assessing insect flight behavior in the laboratory: A primer on flight mill methodology and what can be learned[J]. Annals of the Entomological Society of America, 2019, 112(3): 182-199. doi:10.1093/aesa/say041
doi: 10.1093/aesa/say041
[12]   LAWSON K, SRINIVASAN M. Flight control of fruit flies: Dynamic response to optic flow and headwind[J]. The Journal of Experimental Biology, 2017, 220(11): 2005-2016.
[13]   LAWSON K, SRINIVASAN M. A robust dual-axis virtual reality platform for closed-loop analysis of insect flight[C]. Kuala Lumpur, Dec. 12-15, 2018. doi: 10.1109/ROBIO.2018.8664837
doi: 10.1109/ROBIO.2018.8664837
[14]   RIBAK G, BARKAN S, SOROKER V. The aerodynamics of flight in an insect flight-mill[J]. PLOS ONE, 2017, 12(11): e0186441. doi: 10.1371/journal.pone. 0186441
doi: 10.1371/journal.pone. 0186441
[15]   HEINRICH B. Thermoregulation in endothermic insects: body temperature is closely attuned to activity and energy supplies[J]. Science, 1974, 185: 747-756. doi:10.1126/science.185.4153.747
doi: 10.1126/science.185.4153.747
[16]   RAVI S, SIESENOP T, BERTRAND O J, et al. Bumblebees display characteristics of active vision during robust obstacle avoidance flight[J]. Journal of Experimental Biology, 2022, 225(4): jeb.243021. doi: 10.1242/jeb.243021
doi: 10.1242/jeb.243021
[17]   LINANDER N, DACKE M, BAIRD E. Bumblebees measure optic flow for position and speed control flexibly within the frontal visual field[J]. The Journal of Experimental Biology, 2015, 218(7): 1051-1059. doi:10.1242/jeb.107409
doi: 10.1242/jeb.107409
[18]   RAVI S, BERTRAND O, SIESENOP T, et al. Gap perception in bumblebees[J]. The Journal of Experimental Biology, 2019, 222(2): jeb.184135. doi:10.1242/jeb.184135
doi: 10.1242/jeb.184135
[19]   BERTRAND O, DOUSSOT C, SIESENOP T, et al. Visual and movement memories steer foraging bumblebees along habitual routes[J]. Journal of Experimental Biology, 2021, 224(11): jeb.237867. doi:10.1242/jeb.237867
doi: 10.1242/jeb.237867
[20]   RAVI S, SIESENOP T, BERTRAND O, et al. Bumblebees perceive the spatial layout of their environment in relation to their body size and form to minimize inflight collisions[J]. Proceedings of the National Academy of Sciences, 2020, 117(49): 31494-31499. doi:10.1073/pnas.2016872117
doi: 10.1073/pnas.2016872117
[21]   SRINIVASAN M, LEHRER M, KIRCHNER W, et al. Range perception through apparent image speed in freely flying honeybees[J]. Visual Neuroscience, 1991, 6(5): 519-535. doi:10.1017/s095252380000136x
doi: 10.1017/s095252380000136x
[22]   黄文诚. 蜜蜂品种介绍[J]. 吉林畜牧兽医, 2000, 1(5):32.
HUANG Wen-cheng. Bee species introduction[J]. Jilin Animal Husbandry and Veterinary Medicine, 2000, 1(5): 32.
[1] Mingshuo LI,Lingshuai MENG,Haitao GU,Xinxing CAO,Mingyuan ZHANG. Design and implementation of launch and recovery system for AUV based on USV[J]. Chin J Eng Design, 2023, 30(5): 650-656.
[2] Baicun WANG,Kailing ZHU,Jinsong BAO,Feng WANG,Haibo XIE,Huayong YANG. Intelligent design and scheduling optimization of painted body storage based on digital pedestal system[J]. Chin J Eng Design, 2023, 30(4): 399-408.
[3] Bowei XIE,Mohui JIN,Zhou YANG,Jieli DUAN,Mingyu QU,Jinhui LI. Research on mechanical properties and model parameters of 3D printed TPU material[J]. Chin J Eng Design, 2023, 30(4): 419-428.
[4] Jindong WANG,Yuhong XIE,Yi CHEN,Zhanyang WU. Biomimetic design of hammer pieces for hammer mill based on beaver incisors[J]. Chin J Eng Design, 2023, 30(4): 476-484.
[5] Qisong QI,Chenggang LI,Qing DONG,Yuhao CHEN,Hang XU. Prediction of load spectrum for crane life cycle and structural optimal design based on fatigue life[J]. Chin J Eng Design, 2023, 30(3): 380-389.
[6] Yang DING,Minglu ZHANG,Xin JIAO,Manhong LI. Biomimetic structure design and compliant motion control for hexapod robot driven by joint motors[J]. Chin J Eng Design, 2023, 30(2): 154-163.
[7] Chunyan ZHANG,Yiwen JIANG,Jie YANG,Xinxing JIANG. Variable-direction multi-terrain mobile full R pair parallel robot[J]. Chin J Eng Design, 2023, 30(2): 189-199.
[8] Zheng-feng ZHANG,Xiao-yu SONG,Xiao-lei YUAN,Wen-juan CHEN,Wei-dong ZHANG. Reliability optimization design for crashworthiness of Al/CFRP hybrid thin-walled structure[J]. Chin J Eng Design, 2022, 29(6): 720-730.
[9] Zheng-feng YAN,Lin-zi HOU,Zhen HAN,Xian-xu BAI. Research on IPPD method of automotive clutch[J]. Chin J Eng Design, 2022, 29(5): 537-546.
[10] Zheng LI,Xiao-rui LUO,Bo XIE,Xin CAO,He-xu SUN. Design of solar intelligent tracking system based on light intensity perception[J]. Chin J Eng Design, 2022, 29(5): 627-633.
[11] Jia-ning ZHANG,Ming-lu ZHANG,Man-hong LI,Tan ZHANG. Structural design and stiffness optimization of mechanical arm with super large telescopic ratio for ash silo cleaning[J]. Chin J Eng Design, 2022, 29(4): 430-437.
[12] Guang-ming SUN,Yi-miao WANG,Qian WAN,Kun GONG,Wen-jin WANG,Jian ZHAO. Optimization design of precision machine tool bed considering assembly deformation[J]. Chin J Eng Design, 2022, 29(3): 318-326.
[13] Hong-yu LIAO,Meng-yang DENG,Min ZHOU,Liang-xi XIE,Jun-fu YAO. Lightweight design of automatic plastering machine based on wire rope transmission[J]. Chin J Eng Design, 2022, 29(2): 196-201.
[14] Chuan-long XIN,Rong ZHENG,Fu-lin REN,Hong-guang LIANG. Suspension balance analysis and counterweight optimization design of AUV docking device[J]. Chin J Eng Design, 2022, 29(2): 176-186.
[15] Yun-jie XU,Yu SHEN,Fei HU,Liang-quan JIA,Heng-nian QI. Design of vigor detection device for batch seeds based on TDLAS[J]. Chin J Eng Design, 2022, 29(2): 231-236.