Please wait a minute...
Chin J Eng Design  2022, Vol. 29 Issue (2): 231-236    DOI: 10.3785/j.issn.1006-754X.2022.00.029
Whole Machine and System Design     
Design of vigor detection device for batch seeds based on TDLAS
Yun-jie XU1,2(),Yu SHEN1,Fei HU1,Liang-quan JIA1,Heng-nian QI1()
1.School of Engineering, Huzhou University, Huzhou 313000, China
2.Huzhou Mechanical Engineering Society, Huzhou 313000, China
Download: HTML     PDF(2674KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In view of the lack of research on vigor detection device for batch seeds in China and the irreversible damage to seed samples caused by traditional detecting methods, a non-destructive detecting method using tunable diode laser absorption spectroscopy (TDLAS) technology to detect seed respiration intensity to determine its vigor level was proposed, and a detection device was designed to realize the batch detection of seed vigor. Firstly, the overall structure of the vigor detection device for batch seeds was designed, and the process flow and requirements of feeding?detection?sorting?reset were determined. Then, the structural design of the key component, the seed box, was carried out, at the same time, its internal optical path was theoretically designed, and the optical path was simulated and analyzed by the Zemax optical design software. And then, the software and hardware design for the detection device control system was carried out. Finally, a detection device prototype was built up, and the feeding, detecting and sorting tests were conducted. The test results showed that the designed vigor detection device prototype for batch seeds had good stability, and its comprehensive success rate was 96.67%. The research result can provide a reference for the commercialization and marketization of the vigor detection device for batch seeds.



Key wordstunable diode laser absorption spectroscopy (TDLAS) technology      seed vigor      batch detection      optical design     
Received: 28 May 2021      Published: 06 May 2022
CLC:  TH 122  
Corresponding Authors: Heng-nian QI     E-mail: 02455@zjhu.edu.cn;02466@zjhu.edu.cn
Cite this article:

Yun-jie XU,Yu SHEN,Fei HU,Liang-quan JIA,Heng-nian QI. Design of vigor detection device for batch seeds based on TDLAS. Chin J Eng Design, 2022, 29(2): 231-236.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2022.00.029     OR     https://www.zjujournals.com/gcsjxb/Y2022/V29/I2/231


基于TDLAS的批量种子活力检测装置设计

针对我国缺乏对批量种子活力检测装置的研究,以及传统检测方法可能会对种子样品造成不可逆损伤的问题,提出了一种通过可调谐半导体激光吸收光谱(tunable diode laser absorption spectroscopy, TDLAS)技术检测种子呼吸强度来判定其活力等级的无损检测方法,并设计了相应的检测装置,以实现对种子活力的批量检测。首先,从整体上设计了批量种子活力检测装置的结构,确定了上料—检测—分选—复位的工艺流程和要求。然后,对该检测装置的关键部件——种子盒进行了结构设计,同时对其内部光路进行了理论设计,并结合Zemax光学设计软件对内部光路进行了仿真分析。接着,对该检测装置控制系统的软、硬件进行了设计。最后,搭建了检测装置样机,并开展了上料、检测和分选试验。试验结果表明,所设计的批量种子活力检测装置样机的稳定性较好,其综合成功率达96.67%。研究结果可为批量种子活力检测装置的商品化和市场化提供参考。


关键词: 可调谐半导体激光吸收光谱(TDLAS)技术,  种子活力,  批量检测,  光学设计 
Fig.1 Overall structure of vigor detection device for batch seeds
Fig.2 Schematic diagram of seed box structure
Fig.3 Schematic diagram of reflection principle of White pool
Fig.4 Schematic diagram of internal optical path reflection of optical absorption cell in seed box
Fig.5 Spot produced on the large concave spherical mirror after 40 times of laser reflection
Fig.6 Principle of pneumatic control system of vigor detection device for batch seeds
输入地址信号输出地址信号
X0启动Y0传送带启动
X1停止Y1电磁阀YA5-分选机构分选
X2上料Y2电磁阀YA6-分选机构分选
X3检测Y3电磁阀YA1-上料机构上料
X4分选Y4电磁阀YA2-上料机构送料
X6活力等级信号Y5电磁阀YA3-检测机构夹紧
X7位置传感器-检测Y6电磁阀YA7-分选机构分选
X10位置传感器-上料Y7电磁阀YA4-检测机构限位
Table 1 I/O distribution of control system of vigor detection device for batch seeds
Fig.7 Hardware wiring of control system of vigor detection device for batch seeds
Fig.8 PLC program sequential function chart of control system of vigor detection device for batch seeds
Fig.9 Prototype of vigor detection device for batch seeds
[1]   曹祥练,潘威,秦明松.种子无损分选新技术研究进展[J].种子,2016,35(1):44-47. doi:10.16590/j.cnki.1001-4705.2016.01.044
CAO Xiang-lian, PAN Wei, QIN Ming-song. Development of the non-destructive technology of seed upgrading and sorting[J]. Seed, 2016, 35(1): 44-47.
doi: 10.16590/j.cnki.1001-4705.2016.01.044
[2]   瞿志杰,贾良权,祁亨年.种子活力无损检测方法研究进展[J].浙江农林大学学报,2020,37(2):382-390. doi:10.11833/j.issn.2095-0756.2020.02.025
QU Zhi-jie, JIA Liang-quan, QI Heng-nian. Research advances in non-destructive detection methods of seed vigor[J]. Journal of Zhejiang A & F University, 2020, 37(2): 382-390.
doi: 10.11833/j.issn.2095-0756.2020.02.025
[3]   袁俊,郑雯,祁亨年,等.种子活力光学无损检测技术研究进展[J].作物杂志,2020(5):9-16. doi:10.16035/j.issn.1001-7283.2020.05.002
YUAN Jun, ZHENG Wen, QI Heng-nian,et al. Progress in research of optical non-destructive test technology for seed vigor[J]. Crops, 2020(5): 9-16.
doi: 10.16035/j.issn.1001-7283.2020.05.002
[4]   潘威,杜景诚,乔雨.基于氧传感技术测定烟草种子活力的初步研究[J].种子,2018,37(6):72-75. doi:10.16590/j.cnki.1001-4705.2018.06.072
PAN Wei, DU Jing-cheng, QIAO Yu. Preliminary study on seed vigor testing of tobacco seeds based on oxygen sensing technology[J]. Seed, 2018, 37(6): 72-75.
doi: 10.16590/j.cnki.1001-4705.2018.06.072
[5]   贾良权,祁亨年,胡文军,等.采用TDLAS技术的玉米种子活力快速无损分级检测[J].中国激光,2019,46(9):297-305. doi:10.3788/cjl201946.0911002
JIA Liang-quan, QI Heng-nian, HU Wen-jun, et al. Rapid nondestructive grading detection of maize seed vigor using TDLAS technique[J]. Chinese Journal of Lasers, 2019, 46(9): 297-305.
doi: 10.3788/cjl201946.0911002
[6]   王亚丽,彭彦昆,赵鑫龙,等.玉米种子活力逐粒无损检测与分级装置研究[J].农业机械学报,2020,51(2):350-356. doi:10.6041/j.issn.1000-1298.2020.02.038
WANG Ya-li, PENG Yan-kun, ZHAO Xin-long, et al. Design and experiment of non-destructive testing and grading device for corn seed vigor[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(2): 350-356.
doi: 10.6041/j.issn.1000-1298.2020.02.038
[7]   徐云杰,胡飞,胡晓军,等.一种气动吸附式种子活力分选机:CN110419292A[P].2019-11-08.
XU Yun-jie, HU Fei, HU Xiao-jun, et al. A apneumatic adsorption type seed vitality sorter: CN110419292A[P]. 2019-11-08.
[8]   王燕,张锐.光电探测器特性在TDLAS气体检测中的影响[J].光学学报,2016,36(2):288-294. doi:10.3788/aos201636.0230002
WANG Yan, ZHANG Rui. Photo detector characteristics effect on TDLAS gas detection[J]. Acta Optica Sinica, 2016, 36(2): 288-294.
doi: 10.3788/aos201636.0230002
[9]   洪光烈,张寅超,谭锟,等.基于参量振荡探测对流层CO2的差分吸收雷达[J].光电工程,2005,32(3):9-12. doi:10.3969/j.issn.1003-501X.2005.03.003
HONG Guang-lie, ZHANG Yin-chao, TAN Kun, et al. Optical parametric oscillator-based differential absorption lidar for detecting carbon dioxide in troposphere[J]. Opto-Electronic Engineering, 2005, 32(3): 9-12.
doi: 10.3969/j.issn.1003-501X.2005.03.003
[10]   房思超.TDLAS型CO2气体检测技术的仿真研究及系统研制[D].长春:中国科学院长春光学精密机械与物理研究所,2017:22-23.
FANG Si-chao. The simulation research and development of carbon dioxide detection system based on TDLAS[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2017: 22-23.
[11]   瞿志杰.基于TDLAS技术的水稻种子活力无损检测初步研究[D].杭州:浙江农林大学,2019:14-15.
QU Zhi-jie. Preliminary study on nonderstructive detection of rice seed vigor based on TDLAS technology[D]. Hangzhou: Zhejiang A & F University, 2019: 14-15.
[12]   禹迎春,王晗,王志敏,等.基于QCL-TDLAS的NH3浓度测量仿真研究[J].应用光学,2020,41(6):1255-1261. doi:10.5768/JAO202041.0603006
YU Ying-chun, WANG Han, WANG Zhi-min, et al. Simulation study of NH3 concentration measurement based on QCL-TDLAS[J]. Journal of Applied Optics, 2020, 41(6): 1255-1261.
doi: 10.5768/JAO202041.0603006
[13]   王哲强,谢珊珊,李劲松.新型光学长程吸收池的仿真设计研究[J].大学物理实验,2016,29(3):74-79. doi:10.14139/j.cnki.cn22-1228.2016.003.021
WANG Zhe-qiang, XIE Shan-shan, LI Jin-song. Study of new type optical multi-pass optical absorption cell[J]. Physical Experiment of College, 2016, 29(3): 74-79.
doi: 10.14139/j.cnki.cn22-1228.2016.003.021
[14]   HERRIOTT D, KOGELNIK H, KOMPFNER R. Off-axis paths in spherical mirror interferometers[J]. Applied Optics, 1964, 3(4): 523-526. doi:10.1364/ao.3.000523
doi: 10.1364/ao.3.000523
[15]   杨牧,李传亮,魏计林.基于Herriott型长程池的光学设计的研究[J].量子光学学报,2013,19(2):189-194.
YANG Mu, LI Chuan-liang, WEI Ji-lin. A novel design of multipass Herriott type cell[J]. Acta Sinica Quantum Optica, 2013, 19(2): 189-194.
[16]   GUO Yin, SUN Li-qun. Biconic White multipass cell design based on a skew ray-tracing model[J]. Applied Optics, 2017, 56(27): 7586-7595. doi:10.1364/ao.56.007586
doi: 10.1364/ao.56.007586
[17]   李洪刚,吴岩磊.基于Zemax的怀特池光学设计[J].天津科技,2019,46(8):41-42,45. doi:10.3969/j.issn.1006-8945.2019.08.012
LI Hong-gang, WU Yan-lei. Optical design of White cell based on Zemax[J]. Tianjin Science & Technology, 2019, 46(8): 41-42, 45.
doi: 10.3969/j.issn.1006-8945.2019.08.012
[18]   沈超,张玉钧,倪家正.光学气体吸收池在吸收光谱技术中的发展与应用[J].红外,2012,33(12):1-7. doi:10.3969/j.issn.1672-8785.2012.12.001
SHEN Chao, ZHANG Yu-jun, NI Jia-zheng. Development and applications of multipass optical gas cells in tunable diode laser absorption spectroscopy[J]. Infrared, 2012, 33(12): 1-7.
doi: 10.3969/j.issn.1672-8785.2012.12.001
[19]   王蕊.红外光谱仪长光程气体池的研究[D].天津:天津大学,2006:11-14.
WANG Rui. Research on the long-path cell of infrared spectrum instrument[D].Tianjin: Tianjin University, 2006: 11-14.
[20]   贾良权,祁亨年,胡文军,等.种子呼吸CO2浓度检测系统[J].光学精密工程,2019,27(6):1397-1404. doi:10.3788/ope.20192706.1397
JIA Liang-quan, QI Heng-nian, HU Wen-jun, et al. CO2 concentration detection system for seed respiration[J]. Optics and Precision Engineering, 2019, 27(6): 1397-1404.
doi: 10.3788/ope.20192706.1397
[21]   刘怀海,魏玉兰,古志刚.液压与气压传动[M].保定:河北大学出版社,2017:217-225.
LIU Huai-hai, WEI Yu-lan, GU Zhi-gang. Hydraulic and pneumatic transmission[M]. Baoding: Hebei University Press, 2017: 217-225.
No related articles found!