Please wait a minute...
工程设计学报  2024, Vol. 31 Issue (6): 733-740    DOI: 10.3785/j.issn.1006-754X.2024.03.411
【特约专栏】“双碳”背景下新型能源装备设计、制造、运维关键技术及其应用     
内腔油冷机壳自然风冷驱动电机冷却性能研究
黄泽好1,2(),谢彦景2(),张霄霆3,曹永鹏3,李东3
1.重庆理工大学 汽车零部件先进制造技术教育部重点实验室,重庆 400054
2.重庆理工大学 车辆工程学院,重庆 400054
3.重庆青山工业有限责任公司,重庆 402761
Research on cooling performance of natural air-cooled drive motor with internal oil-cooled chassis
Zehao HUANG1,2(),Yanjing XIE2(),Xiaoting ZHANG3,Yongpeng CAO3,Dong LI3
1.Key Laboratory of Advanced Manufacturing Technology for Automobile Parts, Ministry of Education, Chongqing University of Technology, Chongqing 400054, China
2.School of Vehicle Engineering, Chongqing University of Technology, Chongqing 400054, China
3.Chongqing Tsingshan Industrial Co. , Ltd. , Chongqing 402761, China
 全文: PDF(2704 KB)   HTML
摘要:

针对车辆驱动用高功率密度、大扭矩、小体积永磁同步电机的传统风冷结构有效散热面积小,以及运行时因存在电磁损耗而导致内部各部件温度过高的问题,提出了一种内腔油冷、机壳自然风冷的油风混合冷却方式,以满足驱动电机内部各部件的温度性能要求。采用等效热网络法计算了不同工况下驱动电机定子绕组、定子、永磁体和转子的温度,得到驱动电机的最高温度出现在定子绕组处。随后,通过实验对驱动电机定子绕组端部的温度进行了测量并与仿真结果进行对比,仿真结果与实测结果的相对误差均在5%以内。结果表明,不同工况下油风混合冷却驱动电机定子绕组及其余各部件的温度下降明显且均满足温度性能要求,说明油风混合冷却方式的散热性能良好,冷却效率高。研究结果可为车用驱动电机散热系统的研制提供参考。

关键词: 驱动电机损耗温度油风混合冷却冷却性能    
Abstract:

Aiming at the problems of permanent magnet synchronous motors with high power density, large torque and small volume for vehicle driving, such as small effective heat dissipation area of traditional air-cooled structure and high temperature of internal components caused by electromagnetic loss during operation, an oil-air hybrid cooling method with natural air cooling of internal cavity oil-cooled chassis was proposed, to meet the temperature performance requirements of each component in the drive motor. The equivalent thermal network method was used to calculate the temperature of the stator winding, stator, permanent magnet and rotor in the drive motor under different working conditions, and the highest temperature of the drive motor appeared at the stator winding. Then, the temperature at the stator winding end of the drive motor was measured by experiment and compared with the simulation results. The relative error between the simulation results and the measured results was less than 5%. The results showed that the temperature of the stator winding and other components of the oil-air hybrid cooling drive motor under different working conditions dropped obviously and met the temperature performance requirements, which indicated that the oil-air hybrid cooling method had good heat dissipation performance and high cooling efficiency. The research results can provide reference for the development of heat dissipation systems for vehicle drive motors.

Key words: drive motor    loss    temperature    oil-air hybrid cooling    cooling performance
收稿日期: 2023-12-27 出版日期: 2024-12-31
CLC:  U 469.72  
基金资助: 重庆市教委科研项目(KJQN20181101);重庆市研究生导师团队项目(渝教研发〔2018〕6号)
通讯作者: 谢彦景     E-mail: zehaohuang@cqut.edu.cn;xie17853569663@163.com
作者简介: 黄泽好(1966—),男,教授,博士,从事汽车NVH技术研究,E-mail: zehaohuang@cqut.edu.cn,https://orcid.org/0000-0002-8027-4583
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
黄泽好
谢彦景
张霄霆
曹永鹏
李东

引用本文:

黄泽好,谢彦景,张霄霆,曹永鹏,李东. 内腔油冷机壳自然风冷驱动电机冷却性能研究[J]. 工程设计学报, 2024, 31(6): 733-740.

Zehao HUANG,Yanjing XIE,Xiaoting ZHANG,Yongpeng CAO,Dong LI. Research on cooling performance of natural air-cooled drive motor with internal oil-cooled chassis[J]. Chinese Journal of Engineering Design, 2024, 31(6): 733-740.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2024.03.411        https://www.zjujournals.com/gcsjxb/CN/Y2024/V31/I6/733

参数数值参数数值
定子铁心外径/mm160转子内径/mm30
定子铁心内径/mm122永磁体布置形式“V一”形
定子铁心长度/mm68极对数4
定子槽数/个48气隙厚度/mm0.9
转子外径/mm121额定功率/ kW14
表1  驱动电机基本参数
图1  驱动电机的外特性曲线
运行参数

额定

工况

峰值

工况

高速

工况

超车加速

工况

电流/A127.540090292
转速/(r/min)5 4004 7008 5005 000~7 000
扭矩/(N·m)26891765
功率/kW14431447
表2  不同工况下驱动电机的运行参数
图2  驱动电机的1/8二维模型
损耗额定工况峰值工况高速工况超车加速工况
总损耗906.665 193.101 387.523 880.91
绕组铜耗350.094 322.00170.172 493.60
定子铁损542.90822.001 197.001 319.00
转子铁损13.4648.0019.4767.23
永磁体涡流损耗0.211.100.881.08
表3  不同工况下驱动电机损耗的仿真结果 (W)
部件及介质等效导热系数/[W/(m·℃)]
定、转子30
绕组387
机壳150
气隙(空气)1.05
冷却油0.14
表4  驱动电机各部件及介质的等效导热系数
图3  驱动电机冷却系统的等效热网络节点分布
部件对应节点部件对应节点
机壳1~3,33,34定子齿17~19
定子轭4~6转子20~25
绕组端部7,8,15,16转轴26~28
轴承29,30端盖31,32
表5  驱动电机各部件的对应节点
图4  峰值工况下仅风冷时绕组温度的仿真结果
图5  油风混合冷却驱动电机简化三维模型
水平因素
甩油孔直径(A)/mm甩油孔数量(B)/个

进口流量(C)/

(L/min)

11.523
22.044
32.565
表6  内腔油冷结构正交设计试验的因素水平表
序号因素水平温度/℃
ABC
1111139.44
2123139.10
3132141.85
4213138.50
5222130.86
6231143.75
7312138.34
8321143.92
9333142.31
表7  不同参数组合下绕组温度的仿真结果(额定工况)
图6  油风混合冷却时驱动电机各部件的温度仿真结果
工况最高温度参考温度
额定工况130.86145.00
高速工况143.52
表8  油风混合冷却时绕组的稳态最高温度 (℃)
工况最高温度/℃

出现时间/

s

运行20 s的

最高温度/℃

峰值工况175.9033.6145.41
超车加速工况176.8522.4163.43
表9  油风混合冷却时绕组的瞬态最高温度
图7  PT100热电阻在绕组端部的埋置位置
图8  驱动电机温度测量实验台架
图9  不同工况下绕组端部温度的仿真值与实测值对比
最高温度/℃额定工况峰值工况高速工况超车加速工况
相对误差/%4.82.44.93.5
仿真值127.98174.80141.66175.67
实测值122.15170.63135.09169.73
表10  不同工况下绕组端部的最高温度对比
1 中国汽车工程学会. 节能与新能源汽车技术路线图2.0[M]. 北京: 机械工业出版社, 2021.
Society of Automotive Engineers of China. Technology roadmap for energy saving and new energy vehicles 2.0[M]. Beijing: China Machine Press, 2021.
2 鞠孝伟, 张凤阁, 程远, 等. 车用驱动电机扁线绕组关键问题研究综述[J]. 中国电机工程学报, 2024, 44(15): 6181-6199.
JU X W, ZHANG F G, CHENG Y, et al. Overview of key issues of flat wire winding of traction motor for electric vehicles[J]. Proceedings of the CSEE, 2024, 44(15): 6181-6199.
3 WAN Z P, DONG L J, WANG X W, et al. Design of an oil-cooling-system of new energy vehicle drive motor[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2023, 237(12): 2810-2818.
4 YANG C X, ZHANG K, QIU H B. Temperature field analysis of oil-cooled heat dissipation in high-speed permanent magnet synchronous motor[J]. Journal of Physics: Conference Series, 2023, 2557(1): 012029.
5 靳永春, 陈俐, 邹宇晟, 等. 永磁同步驱动电机温度场研究进展综述[J]. 电气传动, 2023, 53(1): 28-38.
JIN Y C, CHEN L, ZOU Y S, et al. Review on research progress of PMSM temperature field[J]. Electric Drive, 2023, 53(1): 28-38.
6 WANG H M, ZHANG C J, GUO L Y, et al. Temperature field calculation of the hybrid heat pipe cooled permanent magnet synchronous motor for electric vehicles based on equivalent thermal network method[J]. World Electric Vehicle Journal, 2023, 14(6): 141.
7 张健, 朱锡庆, 张卓然, 等. 电励磁双凸极无刷直流发电机热网络建模与热特性研究[J]. 中国电机工程学报, 2023, 43(1): 318-329.
ZHANG J, ZHU X Q, ZHANG Z R, et al. Thermal network modeling and thermal characteristics analysis of doubly salient brushless DC generator with stator field winding[J]. Proceedings of the CSEE, 2023, 43(1): 318-329.
8 师蔚, 骆凯传, 张舟云. 基于热网络法的永磁电机温度在线估计[J]. 电工技术学报, 2023, 38(10): 2686-2697.
SHI W, LUO K C, ZHANG Z Y. On-line temperature estimation of permanent magnet motor based on lumped parameter thermal network method[J]. Transactions of China Electrotechnical Society, 2023, 38(10): 2686-2697.
9 SRINIVASAN C, YANG X F, SCHLAUTMAN J, et al. Conjugate heat transfer CFD analysis of an oil cooled automotive electrical motor[J]. SAE International Journal of Advances and Current Practices in Mobility, 2020, 2(4): 1741-1753.
10 PARK M H, KIM S C. Thermal characteristics and effects of oil spray cooling on in-wheel motors in electric vehicles[J]. Applied Thermal Engineering, 2019, 152: 582-593.
11 ZHAO A, DUWIG C, LIU C, et al. Parameter study for oil spray cooling on endwindings of electric machines via Eulerian-Lagrangian simulation[J]. Applied Thermal Engineering, 2023, 235: 121281.
12 GARUD K S, LEE M Y. Grey relational based Taguchi analysis on heat transfer performances of direct oil spray cooling system for electric vehicle driving motor[J]. International Journal of Heat and Mass Transfer, 2023, 201: 123596.
13 陈小健, 李婷, 徐刚, 等. 油冷电机绕组喷淋冷却数值模拟与研究[J]. 汽车技术, 2023(10): 58-62. doi:10.1109/icems59686.2023.10344618
CHEN X J, LI T, XU G, et al. Numerical simulation and study on winding spray cooling of oil-cooled motors[J]. Automobile Technology, 2023(10): 58-62.
doi: 10.1109/icems59686.2023.10344618
14 陶大军, 潘博, 戈宝军, 等. 电动汽车驱动电机冷却技术研究发展综述[J]. 电机与控制学报, 2023, 27(4): 75-85. doi:10.15938/j.emc.2023.04.008
TAO D J, PAN B, GE B J, et al. Research and development of key technologies of electric vehicle drive motor[J]. Electric Machines and Control, 2023, 27(4): 75-85.
doi: 10.15938/j.emc.2023.04.008
15 武岳, 张志锋, 平佳齐. 高功率密度轴向磁通永磁电机新型水冷结构设计与温度场分析[J]. 中国电机工程学报, 2021, 41(24): 8295-8305.
WU Y, ZHANG Z F, PING J Q. New type water cooling structure design and temperature field analysis of high power density axial flux permanent magnet motor[J]. Proceedings of the CSEE, 2021, 41(24): 8295-8305.
16 朱发兴, 董月, 吴寒旭, 等. 摇摆激励喷雾冷却实验装置设计[J]. 工程设计学报, 2023, 30(4): 429-437.
ZHU F X, DONG Y, WU H X, et al. Design of spray cooling experiment device with swing excitation[J]. Chinese Journal of Engineering Design, 2023, 30(4): 429-437.
17 陈林, 闫业翠. 高转速下车用扁线电机交流损耗分析与优化[J]. 汽车技术, 2024(1): 34-43.
CHEN L, YAN Y C. Analysis and optimization of AC loss of flat wire motor for electric vehicle at high speed condition[J]. Automobile Technology, 2024(1): 34-43.
18 佟文明, 杨先凯, 鹿吉文, 等. 双层永磁体结构高速永磁电机转子涡流损耗解析模型[J/OL].电工技术学报:1-12(2023-12-11) [2024-01-20]. .
TONG W M, YANG X K, LU J W, et al. Rotor eddy current loss analytical model for high-speed permanent magnet motor based on double layer permanent magnet structure[J/OL]. Transactions of China Electrotechnical Society: 1-12(2023-12-11) [2024-01-20]. .
19 中华人民共和国工业和信息化部. 电动汽车用驱动电机系统可靠性试验方法: [S]. 北京: 中国标准出版社, 2022: 1-8.
Ministry of Industry and Information Technology of the People's Republic of China. Reliability test methods of drive motor system for electric vehicles: [S]. Beijing: Standards Press of China, 2022: 1-8.
20 张云, 张瑞宾, 莫德赟, 等. 电磁式发动机水冷系统流固耦合传热研究[J]. 工程设计学报, 2021, 28(3): 344-349.
ZHANG Y, ZHANG R B, MO D Y, et al. Research on fluid-solid coupling heat transfer of water cooling system of electromagnetic engine[J]. Chinese Journal of Engineering Design, 2021, 28(3): 344-349.
21 谢颖, 范伊杰, 蔡蔚, 等. 油冷式扁线电机油路结构优化设计及温度场计算[J]. 电机与控制学报, 2023, 27(5): 37-45.
XIE Y, FAN Y J, CAI W, et al. Oil circuit structure optimization design and temperature field calculation of oil cooled motor with hairpin winding[J]. Electric Machines and Control, 2023, 27(5): 37-45.
[1] 冀炳晖,茅健,钱波. 基于遗传算法-模糊PID的双喷头FDM3D打印机温度控制方法[J]. 工程设计学报, 2024, 31(2): 151-159.
[2] 朱海燕,邓家超,肖乾,黎洁,易勇. 轮轨激励下高速列车制动盘温度场及闸片磨损仿真分析[J]. 工程设计学报, 2023, 30(6): 753-762.
[3] 李毅,陈国华,夏铭,李波. 电主轴冷却系统设计与仿真优化[J]. 工程设计学报, 2023, 30(1): 39-47.
[4] 祝效华,李聪,刘伟吉,谭宾,徐文. 强研磨性地层中PDC钻头井底热--固三场耦合研究[J]. 工程设计学报, 2022, 29(4): 446-455.
[5] 唐绍禹,吴杰,张辉,邓兵兵,黄禹铭,黄浩. 多极式磁流变离合器温度场仿真与实验研究[J]. 工程设计学报, 2022, 29(4): 484-492.
[6] 樊霄岳, 刘启, 官威, 朱云, 陈苏琳, 沈彬. 电磁微锻机构热效应模拟与实验研究[J]. 工程设计学报, 2022, 29(1): 66-73.
[7] 钟良春, 况雨春, 舒峰, 张聪. 考虑压力与温度影响的螺杆马达过盈量设计方法[J]. 工程设计学报, 2021, 28(3): 321-328.
[8] 王超, 孙文旭, 马晓静, 陈纪旸, 栾义忠, 马思乐. 基于模糊控制的HVPE生长设备温度控制系统[J]. 工程设计学报, 2020, 27(6): 765-770.
[9] 武聪魁, 何柏岩, 袁鹏飞. 计及金属铰链的环形可展天线热-结构分析[J]. 工程设计学报, 2020, 27(3): 349-356.
[10] 蒋宏婉. 硬质合金车刀改进前后切削能对比研究[J]. 工程设计学报, 2019, 26(6): 700-705.
[11] 黄泽好, 张振华, 黄旭, 雷伟. 鼓式制动器制动不稳定时变特性分析[J]. 工程设计学报, 2019, 26(6): 714-721.
[12] 孔德帅, 胡高峰, 张冠伟, 张大卫. 压电驱动器可控预紧力主轴设计及性能分析[J]. 工程设计学报, 2019, 26(6): 743-752.
[13] 谭慧, 宗宽, 熊长武, 翁夏, 杜平安. 叶脉型微通道热沉设计及散热特性分析[J]. 工程设计学报, 2019, 26(4): 477-483.
[14] 杨莺, 叶学龙, 叶超. 超深矿井提升机制动盘热性能分析与优化[J]. 工程设计学报, 2019, 26(1): 47-55.
[15] 王恒, 孙小明, 邵彦, 肖后昆, 张小龙. 基于试验台架的轮胎测温系统研究[J]. 工程设计学报, 2018, 25(5): 590-596.