Please wait a minute...
工程设计学报  2024, Vol. 31 Issue (2): 151-159    DOI: 10.3785/j.issn.1006-754X.2024.03.169
机械设计理论与方法     
基于遗传算法-模糊PID的双喷头FDM3D打印机温度控制方法
冀炳晖1(),茅健1,2(),钱波1
1.上海工程技术大学 机械与汽车工程学院,上海 201600
2.上海交通大学 四川研究院,四川 成都 610213
Temperature control method for dual-nozzle FDM 3D printer based on genetic algorithm-fuzzy PID
Binghui JI1(),Jian MAO1,2(),Bo QIAN1
1.School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai 201600, China
2.Sichuan Research Institute, Shanghai Jiaotong University, Chengdu 610213, China
 全文: PDF(2336 KB)   HTML
摘要:

熔融沉积成形(fused deposition modeling, FDM)3D打印需要将打印喷头加热至材料所需温度后才能开始打印。由于单喷头FDM型3D打印机的打印效率较低,以及其加热系统的滞后性较大且稳定性差,使得整个成形过程既耗时又浪费资源,且成形件的质量不高。为解决上述问题,结合打印材料物理性质和化学性质的差异性,提出了一种基于遗传算法-模糊PID(proportional-integral-derivative,比例-积分-微分)的温度控制方法,以实现对双喷头FDM型3D打印机加热方法的控制,并建立温度控制系统的MATLAB/Simulink仿真模型,以验证所提出的控制方法的可靠性。仿真和实验结果表明,与传统PID控制、模糊PID控制相比,遗传算法-模糊PID控制的响应时间缩短了36.03%和32.45%,调节时间缩短了28.06%和20.99%,具有响应速度快、调节时间短、超调量小和控制效果稳定等优势。研究结果可为复合材料的双喷头FDM 3D打印提供参考。

关键词: 熔融沉积成形双喷头温度控制遗传算法模糊PID    
Abstract:

Fused deposition modeling (FDM) 3D printing requires the print nozzle to be heated the desired temperature of the material before printing begins. Due to the low printing efficiency of the single nozzle FDM 3D printer, and the large lag and poor stability of its heating system, the whole forming process is time-consuming and wasteful of resources, and the quality of the formed parts is not high. In order to solve the above problems, a temperature control method based on genetic algorithm-fuzzy PID (proportional-integral-derivative) was proposed to control the heating method of dual-nozzle FDM 3D printer, which combined the differences in physical and chemical properties of printing materials. The MATLAB/Simulink simulation model of the temperature control system was established to verify the reliability of the proposed control method. The simulation and experimental results showed that compared with the traditional PID control and fuzzy PID control, the response time of the genetic algorithm-fuzzy PID control was shortened by 36.03% and 32.45%, and the adjustment time was shortened by 28.06% and 20.99%, which had the advantages of fast response, short adjustment time, small overshoot and stable control effect. The research results can provide reference for dual-nozzle FDM 3D printing of composite materials.

Key words: fused deposition modeling    dual-nozzle    temperature control    genetic algorithm    fuzzy PID
收稿日期: 2023-05-17 出版日期: 2024-04-26
CLC:  TH 164  
基金资助: 国家重点研发计划资助项目(2018YFB1105301)
通讯作者: 茅健     E-mail: 18635072871@163.com;jmao@sues.edu.cn
作者简介: 冀炳晖(1998—),男,山西晋中人,硕士生,从事复合材料增材制造工艺研究,E-mail: 18635072871@163.com,https://orcid.org/0009-0007-1069-4367
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
冀炳晖
茅健
钱波

引用本文:

冀炳晖,茅健,钱波. 基于遗传算法-模糊PID的双喷头FDM3D打印机温度控制方法[J]. 工程设计学报, 2024, 31(2): 151-159.

Binghui JI,Jian MAO,Bo QIAN. Temperature control method for dual-nozzle FDM 3D printer based on genetic algorithm-fuzzy PID[J]. Chinese Journal of Engineering Design, 2024, 31(2): 151-159.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2024.03.169        https://www.zjujournals.com/gcsjxb/CN/Y2024/V31/I2/151

图1  打印喷头温度控制系统的测试模型
变量模糊论域
e[-6, 6]
ec[-6, 6]
Kp[-6, 6]
Ki[-6, 6]
Kd[-6, 6]
表1  模糊PID控制器中各变量的模糊论域
图2  模糊输入量e的隶属度函数
图3  模糊输出量Kp的隶属度函数
eec
NBNMNSZPSPMPB
NBZ/NB/PSZ/NB/NSNM/NM/NBNM/NM/NBNM/NS/NBNB/Z/NMNB/Z/PS
NMPS/NB/PSZ/NB/NSNS/NM/NBNM/NS/NMNM/NS/NMNM/Z/NSNB/Z/Z
NSPS/NB/ZPS/NM/NSZ/NS/NMNS/Z/NMNS/Z/NSNM/PS/NSNM/PS/Z
ZPM/NM/ZPM/NM/NSPS/NS/NSZ/Z/NSNS/PS/NSNM/PM/NSNM/PM/Z
PSPM/NM/ZPM/NS/ZPM/Z/NSPS/PS/ZZ/PS/ZNS/PM/ZNS/PB/Z
PMPB/Z/PBPB/Z/PSPMZ/PSPS/PS/PSPS/PM/PSZ/PB/PSNS/PB/PB
PBPB/Z/PBPB/Z/PMPM/PS/PMPM/PM/PMPS/PM/PSZ/PB/PSZ/PB/PB
表2  Kp、Ki、Kd的模糊控制规则
参数符号含义说明
trise上升时间从开始升温到第1次达到目标温度所需的时间,初始误差为90%
tset调节时间从开始升温到误差稳定在3?以内所需的时间
eover,??max最大超调量目标温度的最大超调量
edelta稳态误差调节后的平均误差
表3  模糊PID控制器性能指标的符号及含义
图4  基于遗传算法的模糊PID控制参数优化流程
图5  基于不同算法的温度控制器仿真模型
图6  3种温度控制器的控制效果对比
控制器trise/stset/seover,??max/edelta/
传统PID199.21308.2924.570.51
模糊PID188.66280.7119.150.33
遗传算法-模糊PID127.44221.7810.890.04
表4  3种温度控制器的性能指标对比
图7  加入扰动后3种温度控制器的控制效果对比
控制器tset/s
传统PID287.63
模糊PID253.16
遗传算法-模糊PID201.24
表5  加入扰动后3种温度控制器的调节时间对比
图8  双喷头FDM型3D打印机
图9  圆台成形件
图10  打印喷头1的升温曲线(升温至230 ℃)
图11  打印喷头2的升温曲线(升温至280 ℃)
图12  飞机拨叉部件成形件
1 唐通鸣,张政,邓佳文,等.基于FDM的3D打印技术研究现状与发展趋势[J].化工新型材料,2015,43(6):228-230,234.
TANG T M, ZHANG Z, DENG J W, et al. Research status and trend of 3D printing technology based on FDM[J]. New Chemical Materials, 2015, 43(6): 228-230, 234.
2 KIM S, SEONG H, HER Y, et al. A study of the development and improvement of fashion products using a FDM type 3D printer[J]. Fashion and Textiles, 2019, 6: 9(1)-9(24).
3 徐佳.大型FDM双喷头3D打印机设计及工艺参数研究[D].秦皇岛:燕山大学,2016:1-37.
XU J. Large double nozzle FDM 3D printer design and process parameters study[D]. Qinhuangdao: Yanshan University, 2016: 1-37.
4 李晓桐.FDM式3D打印机控制系统设计及工艺参数优化[D].哈尔滨:哈尔滨理工大学,2021:1-39.
LI X T. Control system design of FDM 3D printer and process parameter optimization[D]. Harbin: Harbin University of Science and Technology, 2021: 1-39.
5 ALTAN A, HACIOĞLU R. The algorithm development and implementation for 3D printers based on adaptive PID controller[J]. Journal of Polytechnic, 2018, 21(3): 559-564.
6 LIU Z, WANG G, HUO Y, et al. Research on precise control of 3D print nozzle temperature in PEEK material[J]. AIP Conference Proceedings, 2017, 1890(1): 040076.
7 LIAO H H. Simulations research on Smith predictive adaptive fuzzy-PID compound controller in the temperature control system of microchip level PCR instrument[J]. Applied Mechanics and Materials, 2013, 373-375: 1324-1331.
8 张金立.3D打印机智能温控系统及路径规划算法的研究[D].上海:上海工程技术大学,2020:35-42.
ZHANG J L. Research on intelligent temperature control system and path planning algorithm of 3D printer[D]. Shanghai: Shanghai University of Engineering Science, 2020: 35-42.
9 赵立柱,苏东海,左伟,等.基于粒子群模糊PID控制的风机盘车液压缸同步控制系统[J].机电工程,2022,39(7):961-966. doi:10.3969/j.issn.1001-4551.2022.07.013
ZHAO L Z, SU D H, ZUO W, et al. Synchronous control system of hydraulic cylinder of fan coil car controlled by particle swarm fuzzy PID[J]. Journal of Mechanical & Electrical Engineering, 2022, 39(7): 961-966.
doi: 10.3969/j.issn.1001-4551.2022.07.013
10 刘艺炜.皮肤3D打印三维移动平台搭建与温度控制系统设计[D].太原:太原理工大学,2021:21-32.
LIU Y W. Design of 3D mobile platform for skin 3D printing and temperature control system[D]. Taiyuan: Taiyuan University of Technology, 2021: 21-32.
11 周婧,高红飞,卢林,等.变论域模糊PID控制微流挤出型3D打印机的挤压力研究[J].工程设计学报,2022,29(5):572-578. doi:10.3785/j.issn.1006-754X.2022.00.075
ZHOU J, GAO H F, LU L, et al. Research on extrusion force of micro-flow extrusion 3D printer controlled by variable universe fuzzy PID[J]. Chinese Journal of Engineering Design, 2022, 29(5): 572-578.
doi: 10.3785/j.issn.1006-754X.2022.00.075
12 曲兴田,王学旭,孙慧超,等.熔融沉积成形技术3D打印机加热系统的模糊自适应PID控制[J].吉林大学学报(工学版),2020,50(1):77-83.
QU X T, WANG X X, SUN H C, et al. Fuzzy self⁃adaptive PID control for fused deposition modeling 3D printer heating system[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(1): 77-83.
13 王自立.电动汽车电机驱动控制系统研究[D].南宁:广西大学,2020:18-26.
WANG Z L. Research on electric vehicle motor drive control system[D]. Nanning: Guangxi University, 2020: 18-26.
14 张宝峰,张燿,朱均超,等.基于模糊PID的高精度温度控制系统[J].传感技术学报,2019,32(9):1425-1429. doi:10.3969/j.issn.1004-1699.2019.09.022
ZHANG B F, ZHANG Y, ZHU J C, et al. High precision temperature control system based on fuzzy PID[J]. Chinese Journal of Sensors and Actuators, 2019, 32(9): 1425-1429.
doi: 10.3969/j.issn.1004-1699.2019.09.022
15 樊宁.面向熔融混合材料3D打印的过程控制系统设计与实现[D].南京:南京师范大学,2021:48-61.
FAN N. Design and implementation of process control system for 3D printing of fused mixed materials[D]. Nanjing: Nanjing Normal University, 2021: 48-61.
16 SAHOO B P, PANDA S. Improved grey wolf optimization technique for fuzzy aided PID controller design for power system frequency control[J]. Sustainable Energy, Grids and Networks, 2018, 16: 278-299.
17 GOLDBERG D E. Genetic algorithms in search, optimization and machine learning[M]. Boston: Addison-Wesley Longman Publishing Co., Inc., 1989: 1-191.
18 王婷婷,王宏志,刘清雪,等.遗传算法优化的无刷直流电机模糊PID控制器设计[J].吉林大学学报(理学版),2020,58(6):1421-1428.
WANG T T, WANG H Z, LIU Q X, et al. Design of fuzzy PID controller for brushless DC motor optimized by GA[J]. Journal of Jilin University (Science Edition), 2020, 58(6): 1421-1428.
19 孙嘉梁,符晓.遗传算法优化的移相全桥变换器模糊PID控制[J].测控技术,2022,41(5):113-118.
SUN J L, FU X. Fuzzy PID control of phase shift full-bridge converter optimized by genetic algorithm[J]. Measurement & Control Technology, 2022, 41(5): 113-118.
20 CHEN J, LU Q, BAI J, et al. A temperature control method for microaccelerometer chips based on genetic algorithm and fuzzy PID control[J]. Micromachines, 2021, 12(12): 1511-1524.
21 刘金琨.先进PID控制MATLAB仿真[M].3版.北京:电子工业出版社,2011:288-296.
LIU J K. MATLAB simulation of advanced PID control[M]. 3rd ed. Beijing: Electronic Industry Press, 2011: 288-296.
[1] 田雅琴,胡梦辉,刘文涛,侯寅智. 基于跳点搜索-遗传算法的自主移动机器人路径规划[J]. 工程设计学报, 2023, 30(6): 697-706.
[2] 赵迪,陈果,陈小利,王熊锦. 轮式搜救机器人地形自适应机构设计及越障性能分析[J]. 工程设计学报, 2023, 30(5): 579-589.
[3] 窦方健,邱清盈,管成,邵锦杰,吴海峰. 大转动惯量缠绕机加减速曲线优化设计[J]. 工程设计学报, 2023, 30(4): 503-511.
[4] 官俊,丁医华,葛青涛,赵帅,陆杨,张婕. 基于多材料3D打印技术的RFID天线快速制造[J]. 工程设计学报, 2023, 30(3): 288-296.
[5] 陈翼楠,蒲志新,郑珍妮. 一种具有力检测机制的新型血管介入手术机器人[J]. 工程设计学报, 2023, 30(1): 20-31.
[6] 米鑫,李虹,郭彦青,高宏伟,王浩楠,宁羿帆. 基于线性回归的单柱塞泵单向阀参数优化[J]. 工程设计学报, 2022, 29(6): 705-712.
[7] 周婧,高红飞,卢林,段国林. 变论域模糊PID控制微流挤出型3D打印机的挤压力研究[J]. 工程设计学报, 2022, 29(5): 572-578.
[8] 李琴,贾英崎,黄玉峰,李刚,叶闯. 一种工业机器人多目标轨迹优化算法[J]. 工程设计学报, 2022, 29(2): 187-195.
[9] 丁述勇, 张征, 丁文洁, 林勇. 多巷道式立体车库优化设计与车辆存取策略研究[J]. 工程设计学报, 2021, 28(4): 443-449.
[10] 王超, 孙文旭, 马晓静, 陈纪旸, 栾义忠, 马思乐. 基于模糊控制的HVPE生长设备温度控制系统[J]. 工程设计学报, 2020, 27(6): 765-770.
[11] 张帅, 韩军, 涂群章, 杨小强, 杨旋. 基于GA-NLP的剪刀式折叠桥梁展桥机构多目标优化设计[J]. 工程设计学报, 2020, 27(1): 67-75.
[12] 孔德帅, 胡高峰, 张冠伟, 张大卫. 压电驱动器可控预紧力主轴设计及性能分析[J]. 工程设计学报, 2019, 26(6): 743-752.
[13] 刘春青, 王文汉. 基于人工神经网络-遗传算法的展成法球面精密磨削参数优化[J]. 工程设计学报, 2019, 26(4): 395-402.
[14] 郑华林, 杨舜波, 潘盛湖, 王超. 百叶片定长切料-自动排片控制系统研究[J]. 工程设计学报, 2019, 26(4): 461-468.
[15] 马天兵, 王孝东, 杜菲, 王鑫泉. 基于GA-SVM的刚性罐道故障诊断[J]. 工程设计学报, 2019, 26(2): 170-176.