Please wait a minute...
工程设计学报  2023, Vol. 30 Issue (6): 753-762    DOI: 10.3785/j.issn.1006-754X.2023.03.103
建模、仿真、分析与决策     
轮轨激励下高速列车制动盘温度场及闸片磨损仿真分析
朱海燕1,2(),邓家超1,2,肖乾1,2,黎洁1,2,易勇1,2
1.华东交通大学 轨道交通基础设施性能监测与保障国家重点实验室,江西 南昌 330013
2.华东交通大学 载运工具与装备教育部重点实验室,江西 南昌 330013
Simulation analysis of brake disc temperature field and brake pad wear of high-speed train under wheel-rail excitation
Haiyan ZHU1,2(),Jiachao DENG1,2,Qian XIAO1,2,Jie LI1,2,Yong YI1,2
1.State Key Laboratory of Performance Monitoring and Protecting of Rail Transit Infrastructure, East China Jiaotong University, Nanchang 330013, China
2.Key Laboratory of Conveyance Equipment Ministry of Education, East China Jiaotong University, Nanchang 330013, China
 全文: PDF(5503 KB)   HTML
摘要:

为了研究轮轨激励对制动盘温度场分布及闸片表面磨损的影响,建立了高速列车动力学模型。通过动力学仿真,得出紧急制动工况下制动盘垂向和横向振动幅值;将振幅作为输入条件,导入制动盘热-机耦合有限元模型,分析有、无轮轨激励时制动盘径向、轴向和周向各节点的温度变化规律。基于制动盘热-机耦合有限元模型,结合Umeshmotion磨损子程序,对闸片表面进行ALE车轮非线性临界速度网格自适应处理,实现闸片表面磨损深度的计算,并对比分析有、无轮轨激励对闸片表面磨损深度的影响。仿真结果表明:与无轮轨激励相比,在轮轨激励下制动盘径向、轴向和周向各节点温度降低,且周向各节点在同一时刻达到最高温度,径向和轴向各节点达到最高温度的时间缩短;闸片表面径向和周向各节点的磨损深度增大,加剧了闸片表面的磨损,减少其使用寿命。研究结果可以为更加精准地预测闸片使用寿命提供一定的参考。

关键词: 高速列车轮轨激励制动盘热机耦合温度场磨损    
Abstract:

A high-speed train dynamics model was established to study the effect of wheel rail excitation on the temperature distribution of brake discs and the surface wear of brake pads. The vertical and lateral vibration amplitudes of the brake disc under emergency braking conditions were obtained through dynamic simulation. The amplitudes were introduced into the finite element model of the brake disc thermal-mechanical coupling established by the direct coupling method as input condition. The temperature variation law of each node in the radial, axial and circumferential of the brake disc was compared and analyzed under the condition of with or without wheel-rail excitation. The ALE (arbitrary Lagrangian-Eulerian) mesh adaptive processing was performed on the surface of the brake pad based on the finite element model of brake disc thermal-mechanical coupling, combined with Umeshmotion wear subroutine, the calculation of the surface wear depth of the brake pad was realized. The influence of with or without wheel-rail excitation on the wear depth of the surface of the brake pad was compared and analyzed. The simulation results show that compared with no wheel-rail excitation, the temperature of radial, axial and circumferential nodes of brake disc decreases under wheel-rail excitation, and the circumferential nodes reach the highest temperature at the same time, and the time for radial and axial nodes to reach the highest temperature is shortened. Under the wheel-rail excitation, the wear depth of each node in the radial and circumferential of the surface of the brake pad increases, which increases the wear of the brake pad surface and reduces the brake pad service life. The results of the research can provide some reference for more accurate prediction of the service life of the brake pad.

Key words: high-speed train    wheel-rail excitation    brake disc    thermal-mechanical coupling    temperature field    wear
收稿日期: 2023-01-10 出版日期: 2024-01-02
CLC:  U 270.35  
基金资助: 国家自然科学基金项目(52162045);江西省自然科学基金面上项目(20224BAB204040);江西省自然科学基金面上重点项目(20232ACB204022);载运工具与装备教育部重点实验室自主课题项目(KLCEZ2022-11);轨道交通运载系统全国重点实验室开放课题(RVL2403)
作者简介: 朱海燕(1975—),男,江西新干人,教授,硕士生导师,博士,从事高速列车系统动力学及疲劳强度研究,E-mail: zhupetrelcao@163.com,https://orcid.org/0000-0001-7460-5668
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
朱海燕
邓家超
肖乾
黎洁
易勇

引用本文:

朱海燕,邓家超,肖乾,黎洁,易勇. 轮轨激励下高速列车制动盘温度场及闸片磨损仿真分析[J]. 工程设计学报, 2023, 30(6): 753-762.

Haiyan ZHU,Jiachao DENG,Qian XIAO,Jie LI,Yong YI. Simulation analysis of brake disc temperature field and brake pad wear of high-speed train under wheel-rail excitation[J]. Chinese Journal of Engineering Design, 2023, 30(6): 753-762.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2023.03.103        https://www.zjujournals.com/gcsjxb/CN/Y2023/V30/I6/753

图1  高速列车动力学模型
图2  车轮非线性临界速度
图3  制动盘振动幅值随时间的变化曲线
摩擦副外半径内半径厚度
制动盘32016522
闸片31718120
表1  制动盘及闸片的结构参数 (mm)
参数名称制动盘闸片
杨氏模量/Pa2×10112×1011
泊松比0.2850.300
热传导系数/?W/(m?K)6174
热膨胀系数/K-11.16×10-51.1×10-5
比热/?J/(kg?K)745436
表2  制动盘材料参数
图4  制动盘及闸片的三维模型结构
图5  制动盘及闸片模型的网格划分
图6  制动盘表面温度场的分布云图
图7  制动盘3个方向的节点分布
图8  制动盘径向节点温度随时间的变化曲线
图9  制动盘轴向节点温度随时间的变化曲线
图10  制动盘周向节点温度随时间的变化曲线
图11  闸片ALE网格区域
图12  闸片表面磨损分布云图
图13  闸片表面径向和周向节点示意
图14  制动结束后闸片表面各节点的磨损深度
1 郭静, 王忠民, 姚晓莎. 高速列车制动盘温度场的建模及分析[J]. 应用力学学报, 2016, 33(3): 407-413, 544-545.
GUO J, WANG Z M, YAO X S. Modeling and analysis of temperature field of high-speed train brake disc [J]. Chinese Journal of Applied Mechanics, 2016, 33(3): 407-413, 544-545.
2 李勇, 祝汉燕, 朱颖超. 高速列车制动盘瞬态温度场分析[J]. 制造业自动化, 2018, 40(3): 134-137, 141. doi:10.3969/j.issn.1009-0134.2018.03.035
LI Y, ZHU H Y, ZHU Y C. Simulation analysis on brake disc temperature field for a high-speed train [J]. Manufacturing Automation, 2018, 40(3): 134-137, 141.
doi: 10.3969/j.issn.1009-0134.2018.03.035
3 黄晓华, 商跃进, 王红, 等. 不同仿生散热筋的高速动车组制动盘温度场分析[J]. 机械研究与应用, 2019, 32(1): 37-41.
HUANG X H, SHANG Y J, WANG H, et al. Analysis of the transient temperature field of high-speed EMU brake disks with different bionic heat radiation ribs [J]. Mechanical Research & Application, 2019, 32(1): 37-41.
4 初明泽, 宿崇, 米小珍. 基于微元法的高速制动盘瞬态温度场仿真分析[J]. 制造业自动化, 2020, 42(3): 79-84. doi:10.3969/j.issn.1009-0134.2020.03.018
CHU M Z, SU C, MI X Z. Transient temperature field simulation analysis of highspeed brake disc based on infinitesimal element method [J]. Manufacturing Automation, 2020, 42(3): 79-84.
doi: 10.3969/j.issn.1009-0134.2020.03.018
5 BELHOCINE A. Thermomechanical modeling of disc brake contact phenomena [J]. FME Transactions, 2013, 41(1): 59-65.
6 YEVTUSHENKO A A, KUCIEJ M, GRZES P, et al. Temperature in the railway disc brake at a repetitive short-term mode of braking [J]. International Communications in Heat and Mass Transfer, 2017, 84: 102-109.
7 ADAMOWICZ A. Effect of convective cooling on temperature and thermal stresses in disk during repeated intermittent braking [J]. Journal of Friction and Wear, 2016, 37(2): 107-112.
8 YANG Y, CHAO Y, YE X L, et al. Analysis and optimization of thermal performance of brake disc of ultra-deep mine hoist [J]. Chinese Journal of Engineering Design, 2019, 26(1): 47-55.
9 张方宇, 桂良进, 范子杰. 盘式制动器热—应力—磨损耦合行为的数值模拟[J]. 汽车工程, 2014, 36(8): 984-988, 979.
ZHANG F Y, GUI L J, FAN Z J. Numerical simulation on the coupling behavior between thermal load contact stress and wear in a disc brake[J]. Automotive Engineering, 2014, 36(8): 984-988, 979.
10 张俊峰, 邓璘. 列车制动用Cu基粉末闸片材料摩擦磨损性能分析[J]. 粉末冶金工业, 2017, 27(2): 38-41.
ZHANG J F, DENG L. Analysis of friction and wear properties of copper-based powder brake linings of train braking [J]. Powder Metallurgy Industry, 2017, 27(2): 38-41.
11 ELZAYADY N, ELSOEUDY R. Microstructure and wear mechanisms investigation on the brake pad [J]. Journal of Materials Research and Technology, 2021, 11: 2314-2335.
12 LIU Y, WU Y, MA Y, et al. High temperature wear performance of laser cladding Co06 coating on high-speed train brake disc [J]. Applied Surface Science, 2019, 481: 761-766.
13 MUGNAINI M, ADDABBO T, FORT A, et al. Magnetic brakes material characterization under accelerated testing conditions [J]. Reliability Engineering & System Safety, 2020, 193: 106614.
14 HATAM A, KHALKHALI A. Simulation and sensitivity analysis of wear on the automotive brake pad [J]. Simulation Modelling Practice and Theory, 2018, 84: 106-123.
15 朱海燕, 曾庆涛, 王宇豪, 等. 高速列车动力学性能研究进展[J]. 交通运输工程学报, 2021, 21(3): 57-92. doi:10.19818/j.cnki.1671-1637.2021.03.004
ZHU H Y, ZENG Q T, WANG Y H, et al. Research progress on dynamics performance of high-speed train [J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 57-92.
doi: 10.19818/j.cnki.1671-1637.2021.03.004
16 朱海燕, 袁遥, 肖乾, 等. 钢轨波磨研究进展[J]. 交通运输工程学报, 2021, 21(3): 110-133.
ZHU H Y, YUAN Y, XIAO Q, et al. Research progress on rail corrugation [J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 110-133.
17 王磊, 钱坤才, 姚屏萍. CRH2型动车组用制动闸片瞬态温度场仿真分析[J]. 林业机械与木工设备, 2016, 44(3): 25-28. doi:10.3969/j.issn.2095-2953.2016.03.006
WANG L, QIAN K C, YAO P P. Simulation analysis of transient temperature field of brake pads for CRH2 EMU [J]. Forestry Machinery & Woodworking Equipment, 2016, 44(3): 25-28.
doi: 10.3969/j.issn.2095-2953.2016.03.006
18 乔磊, 马军, 张嘉鹭. 高速动车组盘式制动装置制动盘温度场仿真分析与研究[J]. 机械科学与技术, 2018, 37(12): 1956-1962.
QIAO L, MA J, ZHANG J L. Simulation on brake disc temperature field of disc brake device for high-speed EMU [J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(12): 1956-1962.
19 周素霞, 童欣, 孙宇铎, 等. 基于相变储热原理的高速列车制动盘散热研究[J]. 机械工程学报, 2022, 58(6): 202-210. doi:10.3901/jme.2022.06.202
ZHOU S X, TONG X, SUN Y D, et al. Research on new structure of high-speed train brake disc based on phase change heat storage principle[J]. Journal of Mechanical Engineering, 2022, 58(6): 202-210.
doi: 10.3901/jme.2022.06.202
20 吕雪梅, 王曦, 罗明生. 考虑接触热阻的高速列车制动盘热机耦合行为分析[J]. 机械工程学报, 2021, 57(22): 296-304. doi:10.3901/jme.2021.22.296
LV X M, WANG X, LUO M S. Analysis of thermal-mechanical coupling behavior of brake disc of high-speed trains considering thermal contact resistance [J]. Journal of Mechanical Engineering, 2021, 57(22): 296-304.
doi: 10.3901/jme.2021.22.296
21 王欣, 王国权, 陈勇. 高速列车盘式制动器散热筋结构散热研究[J]. 机车电传动, 2021(3): 94-99.
WANG X, WANG G Q, CHEN Y. Research on heat dissipation effect of radiator structure of disc brake for high-speed train [J]. Electric Drive for Locomotives, 2021(3): 94-99.
22 杨栋, 王思明, 许建玉. CRH3型动车组牵引制动模式曲线的算法研究[J]. 城市轨道交通研究, 2013, 16(12): 94-98.
YANG D, WANG S M, XU J Y. On algorithm of traction and braking mode curve for CRH3 multiple unit [J]. Urban Mass Transit, 2013, 16(12): 94-98.
[1] 袁东海,赵海旭,翟之平,张宝元,兰月政. 基于CFD-DEMArchard模型耦合的锤片磨损规律与磨损失效可靠性分析[J]. 工程设计学报, 2023, 30(6): 746-752.
[2] 张毅,熊思阳,钟思鹏,熊子杰,杨强. 密封面磨损对V形组合密封圈性能的影响[J]. 工程设计学报, 2023, 30(2): 237-243.
[3] 谢红太,王红,柴伟. 新型高速列车风阻制动装置设计与仿真分析[J]. 工程设计学报, 2023, 30(2): 244-253.
[4] 李毅,陈国华,夏铭,李波. 电主轴冷却系统设计与仿真优化[J]. 工程设计学报, 2023, 30(1): 39-47.
[5] 刘江,肖正明,张龙隆,刘卫标. 考虑摆线轮磨损的RV减速器传动精度可靠性分析与参数优化[J]. 工程设计学报, 2022, 29(6): 739-747.
[6] 祝效华,李聪,刘伟吉,谭宾,徐文. 强研磨性地层中PDC钻头井底热--固三场耦合研究[J]. 工程设计学报, 2022, 29(4): 446-455.
[7] 唐绍禹,吴杰,张辉,邓兵兵,黄禹铭,黄浩. 多极式磁流变离合器温度场仿真与实验研究[J]. 工程设计学报, 2022, 29(4): 484-492.
[8] 卢进南,刘扬,王连捷,杨润坤,丁振志. 基于改进Mask Scoring R-CNN的铲齿磨损检测研究[J]. 工程设计学报, 2022, 29(3): 309-317.
[9] 刘舒沁, 刘若晨, 孙见忠, 张进武. 风电齿轮箱磨损状态静电在线监测方法研究[J]. 工程设计学报, 2021, 28(2): 163-169.
[10] 邓晓帆, 任成祖, 陈洋, 陈光, 蔡智杰, 贺英伦. 基于摩擦磨损实验的双盘直槽研磨方法的研具选材研究[J]. 工程设计学报, 2020, 27(6): 720-728.
[11] 马亚超, 张鹏, 黄志强, 牛世伟, 谢豆, 邓嵘. 变温变载影响下PDC钻头的动态磨损趋势预测[J]. 工程设计学报, 2020, 27(5): 625-635.
[12] 刘若晨, 徐成, 王奎洋, 王益民, 孙见忠. 新型磨损区域静电传感器特性参数研究[J]. 工程设计学报, 2020, 27(5): 645-653.
[13] 武聪魁, 何柏岩, 袁鹏飞. 计及金属铰链的环形可展天线热-结构分析[J]. 工程设计学报, 2020, 27(3): 349-356.
[14] 杨莺, 叶学龙, 叶超. 超深矿井提升机制动盘热性能分析与优化[J]. 工程设计学报, 2019, 26(1): 47-55.
[15] 聂明争, 范勤, 王雄, 李知存. FDM技术中加热底板样式对翘曲变形的影响研究[J]. 工程设计学报, 2018, 25(4): 420-425,440.