Please wait a minute...
工程设计学报  2023, Vol. 30 Issue (6): 746-752    DOI: 10.3785/j.issn.1006-754X.2023.03.133
可靠性与保质设计     
基于CFD-DEMArchard模型耦合的锤片磨损规律与磨损失效可靠性分析
袁东海1(),赵海旭1,翟之平1(),张宝元2,兰月政1
1.内蒙古工业大学 机械工程学院,内蒙古 呼和浩特 010051
2.渤海船舶职业学院 机电工程系,辽宁 葫芦岛 125000
Analysis on hammer wear law and wear failure reliability based on CFD-DEM and Archard model coupling
Donghai YUAN1(),Haixu ZHAO1,Zhiping ZHAI1(),Baoyuan ZHANG2,Yuezheng LAN1
1.School of Mechanical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
2.Department of Mechanical and Electrical Engineering, BoHai Shipbuilding Vocational College, Huludao 125000, China
 全文: PDF(1349 KB)   HTML
摘要:

锤片磨损失效是锤片式转子常见的失效模式。为了探究锤片的磨损规律,对锤片磨损失效可靠性进行分析。采用CFD(computational fluid dynamics, 计算流体动力学)、DEM(discrete element method, 离散元方法)与Archard磨损模型耦合方法对锤片磨损过程进行数值模拟,借助偏最小二乘法拟合锤片累积磨损量曲线,建立了锤片累积磨损数学模型。在此基础上,基于应力-强度干涉模型与蒙特卡洛方法对锤片磨损过程中的动态可靠度进行计算与分析。结果表明:锤片累积磨损量随时间近似呈线性递增;采用所建的数学模型算得锤片的累积磨损量为16.09 mm,其与实测值的相对误差为8.76%,说明所建立的锤片累积磨损量预测模型基本准确;在工作时间超过110 h后,锤片的磨损失效可靠度逐渐降低;在达到极限工作时间120 h时,锤片的磨损失效可靠度为0.94。研究结果可以为锤片磨损规律的研究与动态可靠性优化提供参考。

关键词: CFD-DEM-Archard模型耦合锤片磨损规律磨损失效动态可靠性    
Abstract:

Hammer wear failure is a common failure mode of hammer rotors. A coupling method of CFD (computational fluid dynamics), DEM (discrete element method ) and Archard wear model was used to numerically analyze the hammer wear process to explore the hammer wear law and analyze the reliability of hammer wear failure.The hammer cumulative wear curve of was fitted and the mathematical model of the hammer cumulative wear was established by using the partial least squares method. The dynamic reliability during the hammer wear process was calculated and analyzed based on the stress-strength interference model and the Monte Carlo method. The results showed that the hammer cumulative wear increased linearly with time. The hammer cumulative wear was calculated to be 16.09 mm by using the mathematical model, and the relative error between the calculated value and the measured value was 8.76%, which showed that the established model for predicting the hammer cumulative wear was basically accurate. After the working time exceeded 110 h, the wear failure reliability gradually decreased, and when the working time reached the limit of 120 h, the wear failure reliability was 0.94. The research results can provide a reference for the study of hammer wear law and dynamic reliability optimization.

Key words: CFD-DEM-Archard coupling    hammer wear law    wear failure    dynamic reliability
收稿日期: 2023-03-20 出版日期: 2024-01-02
CLC:  S 226.8  
基金资助: 国家自然科学基金资助项目(52165034);内蒙古自治区直属高校基本科研业务费资助项目(JY20230077);内蒙古自治区自然科学基金资助项目(2023LHMS05023);内蒙古自治区硕士研究生科研创新项目(S20231125Z)
通讯作者: 翟之平     E-mail: 20211100014@imut.edu.cn;ngdzhzhp@imut.edu.cn
作者简介: 袁东海(1997—),男,河南信阳人,硕士生,从事疲劳寿命与可靠性分析研究,E-mail: 20211100014@imut.edu.cn,https://orcid.org/0009-0008-4957-3156
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
袁东海
赵海旭
翟之平
张宝元
兰月政

引用本文:

袁东海,赵海旭,翟之平,张宝元,兰月政. 基于CFD-DEMArchard模型耦合的锤片磨损规律与磨损失效可靠性分析[J]. 工程设计学报, 2023, 30(6): 746-752.

Donghai YUAN,Haixu ZHAO,Zhiping ZHAI,Baoyuan ZHANG,Yuezheng LAN. Analysis on hammer wear law and wear failure reliability based on CFD-DEM and Archard model coupling[J]. Chinese Journal of Engineering Design, 2023, 30(6): 746-752.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2023.03.133        https://www.zjujournals.com/gcsjxb/CN/Y2023/V30/I6/746

图1  基于CFD-DEM与Archard模型耦合的锤片磨损量计算流程
图2  揉碎机流道模型及其网格
图3  物料颗粒离散元模型
图4  锤片磨损的仿真结果
序号

转子转速/

(r/min)

物料喂入量/ (kg/s)

锤片磨损量/

10-5mm

12 3000.41.04
22 4000.71.83
32 5000.31.16
42 6000.62.03
52 7000.23.34
62 8000.51.64
72 9000.82.43
表1  t=1 s时锤片磨损量计算结果
图5  锤片磨损失效可靠度随时间变化的曲线
1 翟小艺. 基于FMECA与FTA的饲草揉碎机可靠性分析[D]. 呼和浩特: 内蒙古工业大学, 2021:11-16.
ZHAI X Y. Reliability analysis of forage crushering machine based on FMECA and FTA[D]. Hohhot: Inner Mongolia University of Technology, 2021:11-16.
2 包那日那. 粉碎机锤片磨损机理分析及粉碎性能试验研究[D]. 呼和浩特: 内蒙古农业大学, 2011: 4-13. doi:10.3969/j.issn.1003-188X.2011.11.037
BAO N R N. Wear mechanism analysis on the crusher hammer and the performance analysis on the crushing capability[D]. Hohhot: Inner Mongolia Agricultural University, 2011: 4-13.
doi: 10.3969/j.issn.1003-188X.2011.11.037
3 田家林, 付传红, 杨琳, 等. 基于扭转振动的PDC钻头布齿角度对复合片磨损规律的影响研究[J]. 固体力学学报, 2014, 35(6): 574-582.
TIAN J L, FU C H, YANG L, et al. Infiuence of the tooth-distributing angle of PDC bit on wear of composite plate under torsion vibration[J]. Chinese Journal of Solid Mechanics, 2014, 35(6): 574-582.
4 刘江, 肖正明, 张龙隆, 等. 考虑摆线轮磨损的RV减速器传动精度可靠性分析与参数优化[J]. 工程设计学报, 2022, 29(6): 739-747. doi:10.3785/j.issn.1006-754X.2022.00.081
LIU J, XIAO Z M, ZHANG L L, et al. Transmission accuracy reliability analysis and parameter optimization of RV reducer considering cycloid gear wear[J]. Chinese Journal of Engineering Design, 2022, 29(6): 739-747.
doi: 10.3785/j.issn.1006-754X.2022.00.081
5 SVANBERG A, LARSSON S, MAKI R, et al. Full-scale simulation and validation of wear for a mining rope shovel bucket[J]. Minerals, 2021, 11(6): 623
6 卢凯文, 赵娟, 孙杰, 等. 直齿轮齿面非均匀磨损对模态特性的影响[J]. 机械传动, 2022, 46(7): 31-37.
LU K W, ZHAO J, SUN J, et al. Influence of non-uniform wear on modal characteristics of spur gears[J]. Journal of Mechanical Transmission, 2022, 46(7): 31-37.
7 DVOŘÁK K, DOLÁK D, PALOUŠEK D, et al. The effect of the wear of rotor pins on grinding efficiency in a high-speed disintegrator[J]. Materials Science, 2018, 24(1): 29-34.
8 KALLEL M, ZOUCH F, ANTAR Z, et al. Hammer premature wear in mineral crushing process[J]. Tribology International, 2017, 115: 493-505.
9 ANTONUCCI A, BARR A, MARTIN B, et al. Effect of bit wear on hammer drill handle vibration and productivity[J]. Journal of Occupational and Environmental Hygiene, 2017, 14(8): 640-649.
10 BRUSA E, MORSUT S, BOSSO N. Dynamic behavior and prevention of the damage of material of the massive hammer of the scrap shredding machine [J]. Meccanica, 2014, 49(3): 575-586.
11 SMITS M, KRONBERGS E. Determination centre of percussion for hammer mill hammers [C]// Proceedings of International Conference Engineering for Rural Development. Jelgava, 2017: 364-368.
12 ANIL P, NAIJU C. Sliding wear reliability studies of inconel 625 components manufactured by direct metal deposition (DMD)[J]. Procedia Manufacturing, 2019, 30: 581-587.
13 LUN X J, LI C, ZHAI Z P, et al. Prediction of vibration radiation noise from shell of straw crushing machine[J]. Noise & Vibration Worldwide, 2021, 52(9): 271-284.
14 FRANCISCO B F, ANTONIO B, JOHN M, et al. CFD-DEM modeling and simulation coupled to a global thermodynamic analysis methodology for evaluating energy performance: Biofertilizer industry[J]. Processes, 2019, 7(10): 673.
15 王海芳, 褚天争, 邱豪, 等. 液压球阀磨损可靠性分析[J]. 中国工程机械学报, 2019, 17(4): 356-361.
WANG H F, CHU T Z, QIU H, et al. Wear reliability analysis of hydraulic ball valve[J]. Chinese Journal of Construction Machinery, 2019, 17(4): 356-361.
16 ZHANG B Y, ZHAI Z P, LUN X J, et al. Test analysis and numerical simulation of noise from forage crushers[J]. Applied Acoustics, 2022, 196: 108873.
17 李璨. 饲草揉碎机外壳振动辐射噪声分析与优化[D]. 呼和浩特:内蒙古工业大学, 2020: 20-29.
LI C. Analysis and optimization of vibration radiation noise for a forage rubbing machine[D]. Hohhot: Inner Mongolia Agricultural University, 2020: 20-29.
18 段明泽. 沙柳平茬圆锯片的磨损机理研究及参数优化[D]. 呼和浩特: 内蒙古工业大学, 2021:16-35. doi:10.1007/s12206-022-0313-5
DUAN M Z. Research on wear mechanism and parameter optimization of circular saw blades when stumping salix psammophila[D]. Hohhot: Inner Mongolia Agricultural University, 2021: 16-35.
doi: 10.1007/s12206-022-0313-5
19 杨铁军, 李秀荣. 饲草揉碎机: [S]. 北京: 中国标准出版社, 2007: 1-5.
YANG T J, LI X R. Forage crusher: [S]. Beijing: Standardization Administration of China, 2007: 1-5.
[1] 王新刚, 张义民, 王宝艳. 基于机车车轮的动态疲劳可靠性研究[J]. 工程设计学报, 2009, 16(4): 247-251.