Please wait a minute...
工程设计学报  2022, Vol. 29 Issue (4): 484-492    DOI: 10.3785/j.issn.1006-754X.2022.00.062
建模、仿真、分析与决策     
多极式磁流变离合器温度场仿真与实验研究
唐绍禹(),吴杰(),张辉,邓兵兵,黄禹铭,黄浩
西华大学 机械工程学院,四川 成都 610000
Simulation and experimental research on temperature field of multipole magnetorheological clutch
Shao-yu TANG(),Jie WU(),Hui ZHANG,Bing-bing DENG,Yu-ming HUANG,Hao HUANG
School of Mechanical Engineering, Xihua University, Chengdu 610000, China
 全文: PDF(4284 KB)   HTML
摘要:

针对磁流变离合器在滑差工作时因内部热量聚集而造成传递力矩下降甚至磁流变液失效的问题,采用仿真与实验相结合的方法对一种励磁线圈与永磁体相叠加的多极式磁流变离合器的温度分布特性进行研究。首先,分析了多极式磁流变离合器的热量来源,并建立了其温度场数学模型。然后,利用有限元模拟方法对多极式磁流变离合器在自然散热与强制风冷散热条件下的温度场进行了仿真分析。最后,通过搭建多极式磁流变离合器实验平台开展了温度特性测试实验。结果表明:多极式磁流变离合器在自然散热条件下连续滑差运行时,允许的最大滑差功率为160~170 W;在强制风冷散热条件下连续滑差运行时,允许的最大滑差功率为730~830 W;若瞬时滑差功率为3 000 W,则在磁流变液不失效的情况下允许的滑差时间为280 s。无论是瞬态还是稳态工况,多极式磁流变离合器的最低温度均出现在远离外壳体的动力输入盘轴端处,最高温度出现在第2个磁流变液工作间隙处。当采用强制风冷散热方式时,多极式磁流变离合器的温升速度降低,从而可延长其滑差运行时间。研究结果为磁流变装置的温度分布特性研究提供了理论参考。

关键词: 磁流变离合器温度场仿真分析实验验证    
Abstract:

Aiming at the problem that the transmission torque decreases or even the magnetorheological fluid fails due to internal heat accumulation in the magnetorheological clutch during slip operation, the temperature distribution characteristics of a multipole magnetorheological clutch with excitation coils and permanent magnets superimposed were studied by combining simulation and experiment. Firstly, the heat source of multipole magnetorheological clutch was analyzed, and its temperature field mathematical model was established. Then, the finite element simulation method was used to simulate and analyze the temperature field of multipole magnetorheological clutch under the conditions of natural heat dissipation and forced air-cooling heat dissipation. Finally, the multipole magnetorheological clutch experimental platform was built to carry out the temperature characteristic test experiment. The results showed that the maximum allowable slip power was 160?170 W when the multipole magnetorheological clutch operated continuously under the condition of natural heat dissipation; under the condition of forced air-cooling heat dissipation, the maximum allowable slip power was 730?830 W; if the instantaneous slip power was 3 000 W, the allowable slip time was 280 s without failure of magnetorheological fluid. Regardless of the transient or steady state conditions, the lowest temperature of the multipole magnetorheological clutch occurred at the shaft end of the power input disc far away from the outer housing, and the highest temperature occurred at the second magnetorheological fluid working gap. When the way of forced air-cooling heat dissipation was adopted, the temperature rise speed of the multipole magnetorheological clutch decreased, so as to prolong its slip operation time. The research results provide a theoretical reference for the study of temperature distribution characteristics of magnetorheological devices.

Key words: magnetorheological clutch    temperature field    simulation analysis    experimental verification
收稿日期: 2022-01-05 出版日期: 2022-09-05
CLC:  TH 132  
基金资助: 国家自然科学基金资助项目(51805444);西华大学青年学者后备人才支持计划资助项目(DC1900007176);西华大学人才引进项目(Z201017)
通讯作者: 吴杰     E-mail: xh_tsy@163.com;jiewu09323@mail.xhu.edu.cn
作者简介: 唐绍禹(1998—),男,湖南永州人,硕士生,从事磁流变装置温度特性研究,E-mail:xh_tsy@163.comhttps://orcid.org/0000-0003-3514-6635
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
唐绍禹
吴杰
张辉
邓兵兵
黄禹铭
黄浩

引用本文:

唐绍禹,吴杰,张辉,邓兵兵,黄禹铭,黄浩. 多极式磁流变离合器温度场仿真与实验研究[J]. 工程设计学报, 2022, 29(4): 484-492.

Shao-yu TANG,Jie WU,Hui ZHANG,Bing-bing DENG,Yu-ming HUANG,Hao HUANG. Simulation and experimental research on temperature field of multipole magnetorheological clutch[J]. Chinese Journal of Engineering Design, 2022, 29(4): 484-492.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2022.00.062        https://www.zjujournals.com/gcsjxb/CN/Y2022/V29/I4/484

图1  多极式磁流变离合器结构示意1—动力输入盘;2—轴承盖a;3—深沟球轴承;4—外壳体a;5—侧围板;6—外壳体b;7—磁流变液工作间隙;8—圆柱壳b;9—圆柱壳a;10—外定子;11—圆柱壳c;12—外壳体c;13—下端挡油壳;14—密封圈挡环;15—内定子;16—轴承隔断;17—轴承盖b;18—动力输出盘;19—轴用弹性挡圈;20—永磁体;21—励磁线圈组。
图2  多极式磁流变离合器尺寸参数
尺寸参数数值
内定子宽度D1/mm25
外定子宽度D2/mm40
永磁体角度θ1/(°)46
外定子角度θ2/(°)50
动力输入盘内径r1/mm23.5
侧围板外径r2/mm130
磁流变液轴向长度z/mm30
内定子厚度C1/mm13.5
外定子厚度C2/mm18
圆柱壳厚度d/mm2
磁流变液工作间隙宽度h/mm1
隔环厚度d1/mm6
表1  多极式磁流变离合器尺寸参数取值
部件材料密度ρ/(kg/m3)热导率k/(W/(m2·℃))比热容c/(J/(kg·℃))
动力输入盘不锈钢7 80014460
圆柱壳20钢7 80048460
工作间隙磁流变液3 55011 006
动力输出盘不锈钢7 80014460
外壳体不锈钢7 80014460
定子20钢7 80048460
励磁线圈纯铜8 900384394
永磁体钕铁硼7 8008.9386
表2  多极式磁流变离合器所用材料的物理属性
图3  自然散热条件下多极式磁流变离合器的稳态温度场
图4  磁流变液工作间隙二维平面示意
图5  不同工作间隙处磁流变液的稳态温度分布情况
图6  不同滑差功率下磁流变液的稳态温度分布情况
图7  不同滑差功率下磁流变液瞬态温度分布情况
图8  多极式磁流变离合器冷却风速度分布云图
图9  强制风冷散热条件下多极式磁流变离合器的稳态温度场
图10  不同散热方式下励磁线圈最高瞬态温度对比
图11  不同散热方式下磁流变液最高瞬态温度对比
图12  多极式磁流变离合器温度测试实验平台主要设备
图13  多极式磁流变离合器温度测试实验平台实物
图14  自然散热条件下多极式磁流变离合器的瞬态温度
图15  自然散热条件下励磁线圈最高瞬态温度对比
图16  强制风冷散热条件下多极式磁流变离合器的瞬态温度
图17  强制风冷散热条件下励磁线圈最高瞬态温度对比
1 CHEN X, ZHU X, XU Z, et al. The research of the conductive mechanism and properties of magnetorheological fluids[J]. Physica B: Condensed Matter, 2013, 418: 32-35. doi:10.1016/j.physb.2013.02.042
doi: 10.1016/j.physb.2013.02.042
2 姚黎明,王竹轩,顾玲,等.磁流变液及其工程应用[J].液压与气动,2009(7):64-66.
YAO Li-ming, WANG Zhu-xuan, GU Ling, et al. Magnetorheological fluid and its engineering application[J]. Chinese Hydraulics & Pneumatics, 2009(7): 64-66.
3 李凯权,代俊,常辉,等.磁流变材料的应用综述[J].探测与控制学报,2019,41(1):6-14.
LI Kai-quan, DAI Jun, CHANG Hui, et al. Review of magnetorheological materials application[J]. Journal of Detection & Control, 2019, 41(1): 6-14.
4 张莉洁,朱德荣,舒云星,等.磁流变离合器结构设计与分析[J].机械设计与制造,2018(11):88-91. doi:10.3969/j.issn.1001-3997.2018.11.024
ZHANG Li-jie, ZHU De-rong, SHU Yun-xing, et al. Structure design and analysis of magneto-rheological fluid clutch[J]. Machinery Design & Manufacture, 2018(11): 88-91.
doi: 10.3969/j.issn.1001-3997.2018.11.024
5 MCKEE M, GORDANINEJAD F, WANG X. Effects of temperature on performance of compressible magnetorheo-logical fluid suspension systems[J]. Journal of Intelligent Material Systems and Structures, 2018, 29(1): 41-51. doi:10.1177/1045389x17705203
doi: 10.1177/1045389x17705203
6 WANG D, ZI B, ZENG Y, et al. An investigation of thermal characteristics of a liquid-cooled magnetorheological fluid-based clutch[J]. Smart Materials and Structures, 2015, 24(5): 055020. doi:10.1088/0964-1726/24/5/055020
doi: 10.1088/0964-1726/24/5/055020
7 GORDANINEJAD F, BREESE D G. Heating of magnetorheological fluid dampers[J]. Journal of Intelligent Material Systems and Structures, 1999, 10(8): 634-645. doi:10.1106/55d1-xaxp-yfh6-b2fb
doi: 10.1106/55d1-xaxp-yfh6-b2fb
8 PATIL S R, POWAR K P, SAWANT S M. Thermal anslysis of magnctorheo logical brake for automotive appilcation[J]. Applied Thermal Engineering, 2016, 98: 238-245. doi:10.1016/j.applthermaleng.2015.11.128
doi: 10.1016/j.applthermaleng.2015.11.128
9 陈松,李峰,黄金,等.温度对磁流变液材料及传力性能的影响[J].材料导报,2015,29(8):151-155. doi:10.11896/j.issn.1005-023X.2015.16.033
CHEN Song, LI Feng, HUANG Jin, et al. Influence of temperature on magnetorheological fluid and transmission performance[J]. Materials Review, 2015, 29(8): 151-155.
doi: 10.11896/j.issn.1005-023X.2015.16.033
10 田祖织.磁流变液及其传动技术研究[D].徐州:中国矿业大学,2012:80-105.
TIAN Zu-zhi. Research on magnetorheological fluids and transmission technology[D]. Xuzhou: China University of Mining and Technology, 2012: 80-105.
11 王道明.大功率磁流变传动技术及温度效应研究[D].徐州:中国矿业大学,2014:95-100.
WANG Dao-ming. Research on high-power magnetorheological transmission technology and temperature effect[D]. Xuzhou: China University of Mining and Technology, 2014: 95-100.
12 黄仕彪.磁流变液发热机理综述及其影响因素[J].现代机械,2021(2):89-92. doi:10.13667/j.cnki.52-1046/th.2021.02.020
HUANG Shi-biao. Review on heating mechanism of magneto rheological fluid and its influencing factors[J]. Modern Machinery, 2021(2): 89-92.
doi: 10.13667/j.cnki.52-1046/th.2021.02.020
13 丁舜年.大型电机的发热与冷却[M].北京:科学出版社,1992:24-31.
DING Shun-nian. Heating and cooling of large motors[M]. Beijing: Science Press, 1992: 24-31.
14 郑祥盘,陈凯峰,陈淑梅.曳引电梯磁流变制动装置的温度特性研究[J].中国机械工程,2016,27(16):2141-2147,2154. doi:10.3969/j.issn.1004-132X.2016.16.003
ZHENG Xiang-pan, CHEN Kai-feng, CHEN Shu-mei. Investigation on temperature properties of elevator magnetorheological brake[J]. China Mechanical Engineering, 2016, 27(16): 2141-2147, 2154.
doi: 10.3969/j.issn.1004-132X.2016.16.003
[1] 张栋,杨培,黄哲轩,孙凌宇,张明路. 爬壁机器人悬摆式磁吸附机构的设计与优化[J]. 工程设计学报, 2023, 30(3): 334-341.
[2] 李毅,陈国华,夏铭,李波. 电主轴冷却系统设计与仿真优化[J]. 工程设计学报, 2023, 30(1): 39-47.
[3] 赵富强,杜特,常宝玉,牛志刚. 肢腿履带足机构抬腿工况动力学分析与实验研究[J]. 工程设计学报, 2022, 29(4): 474-483.
[4] 樊霄岳, 刘启, 官威, 朱云, 陈苏琳, 沈彬. 电磁微锻机构热效应模拟与实验研究[J]. 工程设计学报, 2022, 29(1): 66-73.
[5] 张勤, 庞业忠, 王凯. 机器人踩踏式除草过程仿真分析与试验研究[J]. 工程设计学报, 2021, 28(6): 709-719.
[6] 张沈瞳. 基于虚拟样机技术的飞机起落架着陆载荷分析[J]. 工程设计学报, 2021, 28(6): 758-763.
[7] 陈振, 熊涛, 杨延青, 薛晓伟. 可溶球座密封环密封性能分析与结构优化[J]. 工程设计学报, 2021, 28(6): 720-728.
[8] 于如飞, 寇鑫, 陈渭. 基于CFD的新型表面织构仿真分析[J]. 工程设计学报, 2021, 28(4): 466-472.
[9] 白杨溪, 陈洪月, 陈洪岩, 王鑫, 李建刚. 基于滚筒载荷的采煤机滑靴振动分析及实验验证[J]. 工程设计学报, 2021, 28(3): 358-366.
[10] 武聪魁, 何柏岩, 袁鹏飞. 计及金属铰链的环形可展天线热-结构分析[J]. 工程设计学报, 2020, 27(3): 349-356.
[11] 王玉璞, 程文明, 杜润, 王书标, 杨行舟, 翟守才. 大型门式起重机风荷载响应仿真分析[J]. 工程设计学报, 2020, 27(2): 239-246.
[12] 郝地龙, 何霞, 王国荣, 易建国, 陈彰斌. 整体式卡瓦齿槽结构优化[J]. 工程设计学报, 2019, 26(5): 534-543.
[13] 王克飞, 时培成, 彭闪闪, 刁杰胜. 不同边界约束条件下某汽车白车身静刚度分析[J]. 工程设计学报, 2019, 26(4): 441-451.
[14] 陈昭明, 徐泽宇, 邹劲松, 赵迎, 石明全. 隧道施工多功能铺设台车液压系统设计及其响应特征分析[J]. 工程设计学报, 2019, 26(1): 116-122.
[15] 范曙远, 王海波, 吴小笛, 张乐, 张龙. 工业装配外骨骼机械臂承重性能研究[J]. 工程设计学报, 2018, 25(6): 697-702.