【特约专栏】“双碳”背景下新型能源装备设计、制造、运维关键技术及其应用 |
|
|
|
|
基于小波包分解与随机森林的离心泵故障诊断 |
马飞1( ),邵礼光1,徐君1,陶梦秋1,袁沛1( ),胡炳涛2 |
1.杭州景业智能科技股份有限公司,浙江 杭州 310053 2.浙江大学 机械工程学院,浙江 杭州 310028 |
|
Centrifugal pump fault diagnosis based on wavelet pack decomposition and random forest |
Fei MA1( ),Liguang SHAO1,Jun XU1,Mengqiu TAO1,Pei YUAN1( ),Bingtao HU2 |
1.Hangzhou Boomy Intelligent Technology Co. , Ltd. , Hangzhou 310053, China 2.School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, China |
引用本文:
马飞,邵礼光,徐君,陶梦秋,袁沛,胡炳涛. 基于小波包分解与随机森林的离心泵故障诊断[J]. 工程设计学报, 2024, 31(6): 741-749.
Fei MA,Liguang SHAO,Jun XU,Mengqiu TAO,Pei YUAN,Bingtao HU. Centrifugal pump fault diagnosis based on wavelet pack decomposition and random forest[J]. Chinese Journal of Engineering Design, 2024, 31(6): 741-749.
链接本文:
https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2024.03.410
或
https://www.zjujournals.com/gcsjxb/CN/Y2024/V31/I6/741
|
1 |
孔令杰, 雒晓辉, 宋立, 等. 核电厂离心泵叶轮裂纹故障分析与研究[J]. 水泵技术, 2019(4): 37-40. KONG L J, LUO X H, SONG L, et al. Analysis and study of the impeller crack fault diagnosis for nuclear power plant centrifugal pump[J]. Pump Technology, 2019(4): 37-40.
|
2 |
黄若琳, 张志明, 李栋梁. 核电厂卧式多级离心泵智能诊断系统方案设计[J]. 新型工业化, 2022, 12(11): 104-107. HUANG R L, ZHANG Z M, LI D L. Scheme design of intelligent diagnosis system for horizontal multistage centrifugal pump in nuclear power plant[J]. The Journal of New Industrialization, 2022, 12(11): 104-107.
|
3 |
宋怡. 基于贝叶斯分类的核电站泵类设备振动故障诊断方法[J]. 机械制造与自动化, 2023, 52(4): 64-67. SONG Y. Vibration fault diagnosis method of pump equipment in nuclear power plant based on Bayesian classification[J]. Machine Building & Automation, 2023, 52(4): 64-67.
|
4 |
ABOSHOSHA A, HAMAD H A. Employing adaptive fuzzy computing for RCP intelligent control and fault diagnosis[J]. Nuclear Science and Techniques, 2023, 34: 138.
|
5 |
DUTTA N, KALIANNAN P, SHANMUGAM P. SVM algorithm for vibration fault diagnosis in centrifugal pump[J]. Intelligent Automation & Soft Computing, 2023, 35(3): 2997-3020.
|
6 |
辜文娟, 张扬. 基于IMIE、MCFS和SSA-ELM的离心泵故障诊断方法[J]. 机电工程, 2023, 40(9): 1456-1463. GU W J, ZHANG Y. Fault diagnosis method of centrifugal pump based on IMIE and SSA-ELM[J]. Journal of Mechanical & Electrical Engineering, 2023, 40(9): 1456-1463.
|
7 |
KARAGIOVANIDIS M, PANTAZI X E, PAPAMICHAIL D, et al. Early detection of cavitation in centrifugal pumps using low-cost vibration and sound sensors[J]. Agriculture, 2023, 13(8): 1544.
|
8 |
ARASTE Z, SADIGHI A, JAMIMOGHADDAM M. Fault diagnosis of a centrifugal pump using electrical signature analysis and support vector machine[J]. Journal of Vibration Engineering & Technologies, 2023, 11(5): 2057-2067.
|
9 |
王治国, 吴茜. 基于共振特征的离心泵故障诊断[J]. 自动化应用, 2023(7): 144-146. WANG Z G, WU Q. Fault diagnosis of centrifugal pump based on resonance characteristics[J]. Automation Application, 2023(7): 144-146.
|
10 |
CHEN Y F, YUAN J P, LUO Y, et al. Fault prediction of centrifugal pump based on improved KNN[J]. Shock and Vibration, 2021, 2021(1): 7306131.
|
11 |
TOBI M AL, BEVAN G, WALLACE P, et al. Faults diagnosis of a centrifugal pump using multilayer perceptron genetic algorithm back propagation and support vector machine with discrete wavelet transform-based feature extraction[J]. Computational Intelligence, 2021, 37(1): 21-46.
|
12 |
MANIKANDAN S, DURAIVELU K. Vibration-based fault diagnosis of broken impeller and mechanical seal failure in industrial mono-block centrifugal pumps using deep convolutional neural network[J]. Journal of Vibration Engineering & Technologies, 2023, 11(1): 141-152.
|
13 |
孙原理, 宋志浩. 基于多物理场信号相关分析与支持向量机的离心泵故障诊断方法[J]. 振动与冲击, 2022, 41(6): 206-212. SUN Y L, SONG Z H. Centrifugal pump fault diagnosis based on the multi-physical field signals correlation analysis and support vector machine[J]. Journal of Vibration and Shock, 2022, 41(6): 206-212.
|
14 |
RAPUR J S, TIWARI R. Experimental time-domain vibration-based fault diagnosis of centrifugal pumps using support vector machine[J]. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering, 2017, 3(4): 044501.
|
15 |
杨波, 黄倩, 付强, 等. 基于CEEMD和优化KNN的离心泵故障诊断方法[J]. 机电工程, 2022, 39(11): 1502-1509. YANG B, HUANG Q, FU Q, et al. Fault diagnosis method for horizontal centrifugal pump based on CEEMD and optimized KNN[J]. Journal of Mechanical & Electrical Engineering, 2022, 39(11): 1502-1509.
|
16 |
AHMAD Z, HASAN M J, KIM J M. Centrifugal pump fault diagnosis using discriminative factor-based features selection and K-nearest neighbors[C]//International Conference on Intelligent Systems Design and Applications. Cham: Springer International Publishing, 2022: 145-153.
|
17 |
MURALIDHARAN V, SUGUMARAN V. Feature extraction using wavelets and classification through decision tree algorithm for fault diagnosis of mono-block centrifugal pump[J]. Measurement, 2013, 46(1): 353-359.
|
18 |
ADEODU A, DANIYAN I, OMITOLA O, et al. An adaptive Industrial Internet of things (IIOts) based technology for prediction and control of cavitation in centrifugal pumps[J]. Procedia CIRP, 2020, 91: 927-934.
|
19 |
张胜文, 杨凌翮, 程德俊. 数字孪生驱动的离心泵机组故障诊断方法研究[J]. 计算机集成制造系统, 2023, 29(5): 1462-1470. ZHANG S W, YANG L H, CHENG D J. Fault diagnosis method of centrifugal pump driven by digital twin[J]. Computer Integrated Manufacturing Systems, 2023, 29(5): 1462-1470.
|
20 |
KUMAR A, TANG H S, VASHISHTHA G, et al. Noise subtraction and marginal enhanced square envelope spectrum (MESES) for the identification of bearing defects in centrifugal and axial pump[J]. Mechanical Systems and Signal Processing, 2022, 165: 108366.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|