Please wait a minute...
工程设计学报  2018, Vol. 25 Issue (6): 735-740    DOI: 10.3785/j.issn.1006-754X.2018.06.016
通用零部件设计     
月面采样钻具锁合随动式限幅机构研究
孙启臣1, 季节2, 秦俊杰1, 赖小明1
1. 北京卫星制造厂有限公司, 北京 100190;
2. 哈尔滨工业大学 机器人技术与系统国家重点实验室, 黑龙江 哈尔滨 150001
Research on unlockable servo stabilizer on lunar sampling drill
SUN Qi-chen1, JI Jie2, QIN Jun-jie1, LAI Xiao-ming1
1. Beijing Satellite Manufacturer Co., Ltd., Beijing 100190, China;
2. State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
 全文: PDF(3745 KB)   HTML
摘要:

中国探月三期工程将采用无人探测器开展月面采样探测,利用中空外螺旋钻具开展预计深度为2 m的连续钻取采样。在轨作业期间,航天器发射段和飞行段产生的随机振动负载及钻具在采样过程中存在的横向负载等附加负载会引起钻杆挠曲变形,严重时可能会导致钻取采样作业失败。在不修改取芯钻具的前提下,参考地面油田钻井工程中的相关技术,提出了一种月面采样钻具锁合随动式限幅机构。该机构主要由主支撑架、对接锁合组件和钢球锁释组件组成。在限幅机构工作过程中,其主支撑架在钻杆的中部位置提供外部支撑,减小由于飞行振动引起的挠曲变形,当钻具钻进一定深度后,对接锁合组件和钢球锁释组件实现锁合与解锁的功能,并随钻具同步向下进尺,为钻具后续的钻进动作提供空间。通过有限元分析手段,对限幅机构的强度和刚度进行校核与分析。通过试验件研制以及地面钻取采样试验验证可知:锁合随动式限幅机构作为外部支撑,能提高中空外螺旋钻具的刚度,且不会影响钻取采样的正常作业过程。研究结果表明锁合随动作业方式与当前取芯钻具的配合程度较好,提高了钻取采样作业性能及其可靠性,为完善我国探月三期工程钻取采样系统提供了参考。

关键词: 月面采样钻具限幅机构锁合随动方案设计有限元    
Abstract:

An automatic drilling & sampling device will be used for Chinese lunar exploration mission, particularly a hollow outer spiral drill will be used in order to penetrate the lunar regolith in 2 m depth continually. During the space environment, the flexure deformation increases by the additional load, such as the random vibration caused by launching or flighting of the spacecraft and the horizontal load caused by the drilling & sampling process, which complicates the load on the lunar sampling drill. What's worse, it can cause the fault of the exploration mission. Instead of redesigning the lunar sampling drill, an unlockable servo stabilizer was designed for the lunar sampling drill, comparing with the drilling stabilizer in the oilfield drilling technology on the earth. The stabilizer was consisted of the main body frame, the ball locking structure and the docking & locking structure. The main body frame could provide auxiliary support on the middle of the drill pipe in order to decrease the flexure deformation due to the vibration in orbit. When the drill had penetrated in a certain depth, the main body frame could be unlock by the ball locking structure and the docking & locking structure. The entire stabilizer penetrated with the lunar sampling drill, providing enough space for the penetration motion of the drilling and sampling system. Based on finite element method, the strength and stiffness of stabilizer had been tested. Combined with the drilling & sampling experiment with test article of the stabilizer, the unlockable servo stabilizer could improve the stiffness of the lunar sampling drill as an auxiliary support without obvious influence on the drilling & sampling process. The structure of the unlockable servo stabilizer operates well with sampling drill, which will improve the performance and reliability of the drilling & sampling process, and provide reference to improve the drilling & sampling system for Chinese lunar exploration mission.

Key words: lunar regolith drill    drilling stabilizer    unlockable servo    mechanism design    finite element method
收稿日期: 2018-05-18 出版日期: 2018-12-28
CLC:  V19  
基金资助:

国家自然科学基金资助项目(U1637208)

作者简介: 孙启臣(1986-),男,河北唐山人,工程师,硕士,从事空间结构机构设计与试验等研究,E-mail:sun_qi_chen@163.com,https://orcid.org/0000-0001-5119-4501
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
孙启臣
季节
秦俊杰
赖小明

引用本文:

孙启臣, 季节, 秦俊杰, 赖小明. 月面采样钻具锁合随动式限幅机构研究[J]. 工程设计学报, 2018, 25(6): 735-740.

SUN Qi-chen, JI Jie, QIN Jun-jie, LAI Xiao-ming. Research on unlockable servo stabilizer on lunar sampling drill[J]. Chinese Journal of Engineering Design, 2018, 25(6): 735-740.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2018.06.016        https://www.zjujournals.com/gcsjxb/CN/Y2018/V25/I6/735

[1] MARK A S, YOSEPH B, KRIS Z. Drilling in extreme environments:penetration and sampling on earth and other planets[J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(8):1405.
[2] 刘建忠,欧阳自远,李春来,等.中国月球探测进展(2001-2010年)[J].矿物岩石地球化学通报,2013,32(5):544-551. LIU Jian-zhong, OUYANG Zi-yuan, LI Chun-lai, et al. China national moon exploration progress (2001-2010)[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2013, 32(5):544-551.
[3] 叶培建,黄江川,孙泽洲,等.中国月球探测器发展历程和经验初探[J].中国科学:技术科学,2014,44(6):543-558. YE Pei-jian, HUANG Jiang-chuan, SUN Ze-zhou, et al. The process and experience in the development of Chinese lunar probe[J]. Scientia Sinica Technologica, 2014, 44(6):543-558.
[4] 邓宗全.月面采样关键技术研究[C/OL]//中国宇航学会深空探测技术专业委员会第九届学术年会论文集.[2018-05-10]. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-LGCD201210001007.htm. DENG Zong-quan. Key technologies for lunar surface sampling[C/OL]//Proceedings of the 9th Academic Annual Meeting of the China Aerospace Exploration Institute of Deep Space Exploration Technology.[2018-05-10]. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-LGCD201210001007.htm.
[5] 吴伟仁,于登云.深空探测发展与未来关键技术[J].深空探测学报,2014,1(1):5-17. WU Wei-ren, YU Deng-yun. Development of deep space exploration and its future key technologies[J]. Journal of Deep Space Exploration, 2014, 1(1):5-17.
[6] 李军强,方同.扶正器作用下的钻柱横向振动分析[J].石油机械,1998,26(9):41-45. LI Jun-qiang, FANG Tong. Lateral vibration of drill stem with stabilizers[J]. China Petroleum Machinery, 1998, 26(9):41-45.
[7] 付晓辉,邹永廖,郑永春,等.月球表面太空风化作用及其效应[J].空间科学学报,2011,31(6):705-715. FU Xiao-hui, ZOU Yong-liao, ZHENG Yong-chun, et al. Space weathering process and effects on the moon[J]. Chinese Journal of Space Science, 2011, 31(6):705-715.
[8] 李晟诚.月壤钻探取心钻进规程研究[D].哈尔滨:哈尔滨工业大学机电工程学院,2013:10-22. LI Sheng-cheng. Research of drilling & coring strategy for lunar regolith[D]. Harbin:Harbin Institute of Technology, School of Mechanical and Electrical Engineering, 2013:10-22.
[9] CHERKASOV I I, KEMURDZHIAN A L, GROMOV V V, et al. Automatic stations to study the lunar surface[M]. Moscow:Mashinostroyeniye Press, 1976:127-130.
[10] KARTASHOV P M, MOKHOV A V, GORNOSTAEVA T A, et al. Mineral phases on the fracture of a glass particle and in the fines of a Luna 24 regolith sample[M]. Petrology, 2010, 18(2):107-125.
[11] GAO Q, TAO J, HU J, et al. Laboratory study on the mechanical behaviors of an anisotropic shale rock[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2015, 7(2):213-219.
[12] 李子丰,王兆运,阳鑫军,等.钻柱涡动分析及防涡稳定器设计[J].石油钻采工艺,2008,30(3):124-127. LI Zi-feng, WANG Zhao-yun, YANG Xin-jun, et al. Swirling and analysis of drilling strings and anti-whirl stabilizers design[J]. Oil Drilling & Production Technology, 2008, 30(3):124-127.
[13] 乔飞.月壤取芯组件特性分析及试验研究[D].哈尔滨:哈尔滨工业大学机电工程学院,2013:28-44. QIAO Fei. Analysis and experimental study of the lunar soil core component characteristics[D]. Harbin:Harbin Institute of Technology, School of Mechanical and Electrical Engineering, 2013:28-44.
[14] 赵德云,杨海波,杨跃波.深井钻具纵向振动规律分析研究[J].钻采工艺,2002,25(1):14-16. ZHAO De-yun, YANG Hai-bo, YANG Yue-bo. Analysis and research of vertical vibration law of deep well drill tool[J]. Drilling & Production Technology, 2002, 25(1):14-16
[15] 李国庆,王洪军,刘修善,等.钻柱振动模态分析方法及其应用[J].石油钻探技术,2007,35(6):54-56. LI Guo-qing, WANG Hong-jun, LIU Xiu-shan, et al. Analysis and application of drill string vibration[J]. Petroleum Drilling Techniques, 2007, 35(6):54-56.
[16] 王天思.石油钻进工程中竖直井钻柱振动问题的ANSYS模拟计算与分析[D].哈尔滨:哈尔滨工业大学航天学院,2011:27-32. WANG Tian-si. Simulation analysis on vibration of vertical-oil-well drill string based on ANSYS[D]. Harbin:Harbin Institute of Technology, School of Astronautics, 2011:27-32.
[17] 周学芹.钻井井下钻柱振动特性分析及减振技术研究[D].大庆:东北石油大学机械科学与工程学院,2010:35-44. ZHOU Xue-qin. The dynamics analysis of rod string in screw pump well and research eccentric wear prevention methods[D]. Daqing:Northeast Petroleum University, College of Mechanical Science and Engineering, 2010:35-44.
[18] 储胜利,张来斌,樊建春,等.井下钻柱横向振动冲击力计算模型研究[J].钻采工艺,2008,31(4):85-87. CHU Sheng-li, ZHANG Lai-bin, FAN Jian-chun, et al. Research on calculation model for the impact force of lateral vibration of drilling string in downhole[J]. Drilling & Production Technology, 2008, 31(4):85-87.
[1] 谢超,陈云壮,石光楠,赖磊捷. 正交簧片型大行程柔性球铰设计及柔度分析[J]. 工程设计学报, 2023, 30(5): 626-633.
[2] 谢章伟,张兴波,徐哲,张羽,张丰云,王茜,王萍萍,孙树峰,王海涛,刘纪新,孙维丽,曹爱霞. 基于数字孪生的激光加工零件表面温度监控系统的构建[J]. 工程设计学报, 2023, 30(4): 409-418.
[3] 谢博伟,金莫辉,杨洲,段洁利,屈明宇,李锦辉. 3D打印TPU材料的力学性能及模型参数研究[J]. 工程设计学报, 2023, 30(4): 419-428.
[4] 张涛,王开松,唐威,秦可成,刘阳,石雨豪,邹俊. 电流体泵驱动的柔性弯曲执行器的设计及分析[J]. 工程设计学报, 2023, 30(4): 467-475.
[5] 李琴,闫瑞,黄志强,李刚. 电驱可控震源驱动电机匹配设计与优化研究[J]. 工程设计学报, 2023, 30(2): 172-181.
[6] 李毅,陈国华,夏铭,李波. 电主轴冷却系统设计与仿真优化[J]. 工程设计学报, 2023, 30(1): 39-47.
[7] 涂文兵,袁晓文,杨锦雯,杨本梦. 不同元件故障状态下滚动轴承的动态特性研究[J]. 工程设计学报, 2023, 30(1): 82-92.
[8] 李三平,孙腾佳,袁龙强,吴立国. 气动软体采摘机械手设计及实验研究[J]. 工程设计学报, 2022, 29(6): 684-694.
[9] 赵致勃,顾大强,李立新,张靖. 基于接触应力优化的摆线轮修形设计[J]. 工程设计学报, 2022, 29(6): 713-719.
[10] 张正峰,宋小雨,袁晓磊,陈文娟,张伟东. Al/CFRP混合薄壁结构耐撞性能可靠性优化设计[J]. 工程设计学报, 2022, 29(6): 720-730.
[11] 孙光明,王奕苗,万仟,弓堃,汪文津,赵坚. 考虑装配变形的精密机床床身优化设计[J]. 工程设计学报, 2022, 29(3): 318-326.
[12] 丰飞,傅雨晨,范伟,马举. 三角混合两级杠杆微位移放大机构的设计及性能分析[J]. 工程设计学报, 2022, 29(2): 161-167.
[13] 李阳, 聂羽飞. 钠燃烧试验厂房隔热密封门的设计与分析[J]. 工程设计学报, 2022, 29(1): 115-122.
[14] 陈洪月, 张站立, 吕掌权. 线性压缩机圆柱臂盘簧的设计及性能研究[J]. 工程设计学报, 2021, 28(4): 504-510.
[15] 严国平, 周俊宏, 钟飞, 李哲, 周宏娣, 彭震奥. 纸塑复合袋磁力压紧纠偏装置设计及优化[J]. 工程设计学报, 2021, 28(3): 367-373.