Please wait a minute...
工程设计学报  2019, Vol. 26 Issue (1): 47-55    DOI: 10.3785/j.issn.1006-754X.2019.01.007
优化设计     
超深矿井提升机制动盘热性能分析与优化
杨莺, 叶学龙, 叶超
中南大学 能源科学与工程学院, 湖南 长沙 410083
Analysis and optimization of thermal performance of brake disc of ultra deep mine hoist
YANG Ying, YE Xue-long, YE Chao
School of Energy Science and Engineering, Central South University, Changsha 410083, China
 全文: PDF(2146 KB)   HTML
摘要:

超深矿井提升机制动盘在紧急制动过程中由于受到摩擦循环热载荷的作用,内部产生较大的热应力,同时高温会导致制动盘和闸片摩擦制动性能下降甚至失效。针对制动盘制动热性能问题,根据热传导理论和有限元分析方法,建立了制动盘组件三维有限元模型,采取直接耦合方法对制动盘制动过程中的热应力场进行模拟研究,并通过实验验证了仿真参数设置的正确性。分析了闸片数量和排布方式对制动工况下制动盘温度和应力分布的影响。结果表明,在制动阶段,制动盘摩擦面温度先急剧上升,后缓慢下降,摩擦面温度呈现锯齿状波动性变化,制动过程中应力变化规律与温度变化规律相同。原制动盘在制动过程中的最高温度为134.8℃,最大应力为230.2 MPa,高温和大应力区域集中于摩擦面附近;增加闸片数量的制动盘最高温度为142.4℃,最大应力为251.1 MPa,高温和大应力区域同样集中于摩擦面附近;改变闸片排布方式的制动盘最高温度为86.5℃,最大应力为119.1 MPa,高温区域和大应力区域范围较小。由此可知,改变闸片排布方式更能显著降低制动盘温度和应力,并且温度场和应力场分布更均匀。研究结果可为制动盘热性能优化设计提供理论参考。

关键词: 超深矿井制动盘温度热应力优化    
Abstract:

When subjected to cyclic frictional thermal load during the emergency braking process, the brake disc of ultra deep mine hoist generates large internal thermal stress. In the meantime, the high temperature can decrease the friction braking performance of brake disc and brake pad and even cause brake disc failure. Aiming at the thermal performance problem of brake disc, based on the heat conduction theory and the finite element analytic method, the three-dimentional finite element model of the brake disc component was built. The thermal stress field during the braking process was simulated by direct coupling method, and the validity of the simulation parameter setting was verified by experiments. The influences of number and arrangement of brake pads on temperature and stress distribution of brake disc under braking condition were studied. The results indicated that the temperature and stress on the friction surface rose sharply firstly, and then dropped slowly during the braking stage, and the temperature had serrated fluctuations. In the braking process, the variation of stress was the same as that of temperature. The maximal temperature of the original brake disc during the braking process was 134.8℃, while the maximal stress was 230.2 MPa. Also, the high temperature and large stress areas were concentrated near the friction surface. The maximal temperature of the brake disc with increased number of brake pads during the braking process was 142.4℃, the maximal stress was 251.1 MPa, and the high temperature and large stress areas were also concentrated near the friction surface. Through optimization of the arrangement of brake pads, the maximal temperature of brake disc was 86.45℃, the maximal stress was 119.1 MPa, and the high temperature and large stress areas concentrated in a smaller range. It could be seen that change of the arrangement of brake pads could significantly reduce the temperature and stress of the brake disc, and the distribution of temperature field and stress field become more even. The research results can provide a theoretical reference for thermal performance optimization design of brake disc.

Key words: ultra deep mine    brake disc    temperature    heat stress    optimization
收稿日期: 2017-07-10 出版日期: 2019-02-28
CLC:  TJ117.3  
基金资助:

国家重点基础研究发展计划(973计划)资助项目(2014CB049402)

作者简介: 杨莺(1976-),女,四川荣县人,副教授,硕士生导师,博士,从事多场耦合数值模拟与热过程分析等研究,E-mail:137280@csu.edu.cn,https://orcid.org/0000-0002-2311-7696
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
杨莺
叶学龙
叶超

引用本文:

杨莺, 叶学龙, 叶超. 超深矿井提升机制动盘热性能分析与优化[J]. 工程设计学报, 2019, 26(1): 47-55.

YANG Ying, YE Xue-long, YE Chao. Analysis and optimization of thermal performance of brake disc of ultra deep mine hoist. Chinese Journal of Engineering Design, 2019, 26(1): 47-55.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2019.01.007        https://www.zjujournals.com/gcsjxb/CN/Y2019/V26/I1/47

[1] 郝用兴.矿井提升机盘形制动系统工作状态监控与安全[J].中国安全科学学报,2006,16(5):126-129. HAO Yong-xing. Working status monitoring and safety of disk braking system of mine hoisting machine[J]. China Safety Science Journal, 2006, 16(5):126-129.
[2] 陈德玲,张建武,周平.高速轮轨列车制动盘热应力有限元研究[J].铁道学报,2006,28(2):39-43. CHEN De-ling, ZHANG Jian-wu, ZHOU Ping. FEM thermal stress analysis of high-speed locomotive braking discs[J]. Journal of the China Railway Society, 2006, 28(2):39-43.
[3] YANG Zhi-yong, HAN Jian-min, LI Wei-jing, et al. Brake test of SiCp/A356 brake disk and interpretation of experimental results[J]. Chinese Journal of Mechanical Engineering, 2007, 20(5):74-79.
[4] LEE K. Frictionally excited thermoelastic instability in automotive drum brakes[J]. Journal of Tribology, 1993, 122(4):607-614.
[5] 赵文杰,吴涛,徐延海.基于ANSYS的汽车制动盘温度场仿真分析[J].西华大学学报,2012,31(2):31-34. ZHAO Wen-jie, WU Tao, XU Yan-hai. Thermal field analysis of automobile brake disc based on ANSYS[J]. Journal of Xihua University, 2012, 31(2):31-34.
[6] 丁莉芬,张强.列车制动盘温度场的数值模拟[J].装备制造技术,2010(1):33-35. DING Li-fen, ZHANG Qiang. Analysis on fretting fatigue of axle for haul train[J]. Equipment Manufacturing Technology, 2010(1):33-35.
[7] 仲晖.两种不同材料的列车制动盘温度场分析[J].装备制造技术,2010(6):30-31. ZHONG Hui. Analysis on temperature field of brake disc under two materials[J]. Equipment Manufacturing Technology, 2010(6):30-31.
[8] 赵海燕,张海全,汤晓华.快速列车盘型制动热过程有限元分析[J].清华大学学报,2005,45(5):589-592. ZHAO Hai-yan, ZHANG Hai-quan, TANG Xiao-hua. Thermal FEM analysis of passenger railway car brake discs[J]. Journal of Tsinghua University, 2005, 45(5):589-592.
[9] MACKIN T J, NOE S C, BALL K J. Thermal cracking in disc brakes[J]. Engineering Failure Analysis, 2002, 9(1):63-76.
[10] KIM D J, LEE Y M, PARK J S. Thermal stress analysis for a disk brake of railway vehicles with consideration of the pressure distribution on africtional surface[J]. Materials Science and Engineering A, 2008(1), 483:456-459.
[11] HWANG P, WU X. Investigation of temperature and thermal stress in ventilated disc brake based on 3D thermo-mechanical coupling model[J]. Journal of Mechanical Science & Technology, 2010, 24(1):81-84.
[12] 林谢昭,高诚辉,黄健萌.制动工况参数对制动盘摩擦温度场分布的影响[J].工程设计学报,2006,13(1):46-48. LIN Xie-zhao, GAO Cheng-hui, HUANG Jian-meng. Effects of operating condition parameters on distribution of friction temperature field on brake disc[J]. Chinese Journal of Engineering Design, 2006, 13(1):46-48.
[13] 夏德茂,奚鹰,周亚红.热载荷确定方法对制动盘温度场影响的研究[J].中国工程机械学报,2015,15(3):388-393. XIA De-mao, XI Ying, ZHOU Ya-hong. Impact of thermal loading determination on brake disc temperature field[J]. Chinese Journal of Construction Machinery, 2015, 15(3):388-393.
[14] CUI Jian-zhong, WANG Cun-tang, XIE Fang-wei, et al. Numerical investigation on transient thermal behavior of multidisk friction pairs in hydro-viscous drive[J]. Applied Thermal Engineering, 2014, 67(1/2):409-422.
[15] 农万华,高飞,符蓉.摩擦块形状对制动盘摩擦温度及热应力分布的影响[J].润滑与密封,2012,37(8):52-56. NONG Wan-hua, GAO Fei, FU Rong. Influence of brake pad shape on friction temperature and thermal stress of brake disc[J]. Lubrication Engineering, 2012, 37(8):52-56.
[16] 张扬,张力孟,春玲.汽车摩擦材料用增强纤维的研究现状与发展趋势[J].北京工商大学学报,2006,24(5):19-31. ZHANG Yang, ZHANG Li-meng, CHUN Ling. Development of reinforcing fiber used in automotive friction material[J]. Journal of Beijing Technology and Business University, 2006, 24(5):19-31.
[17] WAGNER A, GOTTFRIED S K, HAGEDORN P. Structural optimization of an asymmetric automotive brake disc with cooling channels to avoid squeal[J]. Journal of Sound and Vibration, 2014, 333(7):1888-1898.
[18] DUZGUN M. Investigation of thermo-structural behaviors of different ventilation applications on brake discs[J]. Journal of Mechanical Science & Technology, 2012, 26(1):235-240.
[19] HAN Chang-bao, DU Wei-ming, ZHANG Chi. Harvesting energy from automobile brake in contact and non-contact mode by conjunction of triboelectrication and electrostatic-induction processes[J]. Nano Energy, 2014, 6:59-65.

[1] 宁志强,卫立新,权龙,赵美卿,高有山. 变排量非对称轴向柱塞泵抗扰控制及并行整定方法[J]. 工程设计学报, 2022, 29(4): 401-409.
[2] 张嘉宁,张明路,李满宏,张坦. 面向灰库清理的超大伸缩比机械臂结构设计与刚度优化[J]. 工程设计学报, 2022, 29(4): 430-437.
[3] 祝效华,李聪,刘伟吉,谭宾,徐文. 强研磨性地层中PDC钻头井底热--固三场耦合研究[J]. 工程设计学报, 2022, 29(4): 446-455.
[4] 唐绍禹,吴杰,张辉,邓兵兵,黄禹铭,黄浩. 多极式磁流变离合器温度场仿真与实验研究[J]. 工程设计学报, 2022, 29(4): 484-492.
[5] 刘洪江,胡腾,何勇,董峰,罗为. 基于CSO-SVM的数控机床主轴热误差建模[J]. 工程设计学报, 2022, 29(3): 339-346.
[6] 王景良,朱天成,朱龙彪,许飞云. 连续体结构的变密度拓扑优化方法研究[J]. 工程设计学报, 2022, 29(3): 279-285.
[7] 孙光明,王奕苗,万仟,弓堃,汪文津,赵坚. 考虑装配变形的精密机床床身优化设计[J]. 工程设计学报, 2022, 29(3): 318-326.
[8] 张春燕,丁兵,何志强,杨杰. 转盘式多足仿生机器人的运动学分析及优化[J]. 工程设计学报, 2022, 29(3): 327-338.
[9] 李琴,贾英崎,黄玉峰,李刚,叶闯. 一种工业机器人多目标轨迹优化算法[J]. 工程设计学报, 2022, 29(2): 187-195.
[10] 辛传龙,郑荣,任福琳,梁洪光. AUV接驳装置悬浮平衡分析与配重优化设计[J]. 工程设计学报, 2022, 29(2): 176-186.
[11] 梁栋, 梁正宇, 畅博彦, 齐杨, 徐振宇. 多臂机提综臂辅助旋铆并联机器人优化设计[J]. 工程设计学报, 2022, 29(1): 28-40.
[12] 钟道方, 田颖, 张明路. 轮腿式爬壁机器人的永磁吸附装置设计与优化[J]. 工程设计学报, 2022, 29(1): 41-50.
[13] 樊霄岳, 刘启, 官威, 朱云, 陈苏琳, 沈彬. 电磁微锻机构热效应模拟与实验研究[J]. 工程设计学报, 2022, 29(1): 66-73.
[14] 肖圳, 何彦, 李育锋, 吴鹏程, 刘德高, 杜江. 改进MDSMOTEPSO-SVM在汽车组合仪表分类预测中的应用[J]. 工程设计学报, 2022, 29(1): 20-27.
[15] 杨世香, 李文强. 焚烧灰处理装备密封结构的创新设计[J]. 工程设计学报, 2021, 28(6): 679-686.