优化设计 |
|
|
|
|
超深矿井提升机制动盘热性能分析与优化 |
杨莺, 叶学龙, 叶超 |
中南大学 能源科学与工程学院, 湖南 长沙 410083 |
|
Analysis and optimization of thermal performance of brake disc of ultra deep mine hoist |
YANG Ying, YE Xue-long, YE Chao |
School of Energy Science and Engineering, Central South University, Changsha 410083, China |
[1] 郝用兴.矿井提升机盘形制动系统工作状态监控与安全[J].中国安全科学学报,2006,16(5):126-129. HAO Yong-xing. Working status monitoring and safety of disk braking system of mine hoisting machine[J]. China Safety Science Journal, 2006, 16(5):126-129.
[2] 陈德玲,张建武,周平.高速轮轨列车制动盘热应力有限元研究[J].铁道学报,2006,28(2):39-43. CHEN De-ling, ZHANG Jian-wu, ZHOU Ping. FEM thermal stress analysis of high-speed locomotive braking discs[J]. Journal of the China Railway Society, 2006, 28(2):39-43.
[3] YANG Zhi-yong, HAN Jian-min, LI Wei-jing, et al. Brake test of SiCp/A356 brake disk and interpretation of experimental results[J]. Chinese Journal of Mechanical Engineering, 2007, 20(5):74-79.
[4] LEE K. Frictionally excited thermoelastic instability in automotive drum brakes[J]. Journal of Tribology, 1993, 122(4):607-614.
[5] 赵文杰,吴涛,徐延海.基于ANSYS的汽车制动盘温度场仿真分析[J].西华大学学报,2012,31(2):31-34. ZHAO Wen-jie, WU Tao, XU Yan-hai. Thermal field analysis of automobile brake disc based on ANSYS[J]. Journal of Xihua University, 2012, 31(2):31-34.
[6] 丁莉芬,张强.列车制动盘温度场的数值模拟[J].装备制造技术,2010(1):33-35. DING Li-fen, ZHANG Qiang. Analysis on fretting fatigue of axle for haul train[J]. Equipment Manufacturing Technology, 2010(1):33-35.
[7] 仲晖.两种不同材料的列车制动盘温度场分析[J].装备制造技术,2010(6):30-31. ZHONG Hui. Analysis on temperature field of brake disc under two materials[J]. Equipment Manufacturing Technology, 2010(6):30-31.
[8] 赵海燕,张海全,汤晓华.快速列车盘型制动热过程有限元分析[J].清华大学学报,2005,45(5):589-592. ZHAO Hai-yan, ZHANG Hai-quan, TANG Xiao-hua. Thermal FEM analysis of passenger railway car brake discs[J]. Journal of Tsinghua University, 2005, 45(5):589-592.
[9] MACKIN T J, NOE S C, BALL K J. Thermal cracking in disc brakes[J]. Engineering Failure Analysis, 2002, 9(1):63-76.
[10] KIM D J, LEE Y M, PARK J S. Thermal stress analysis for a disk brake of railway vehicles with consideration of the pressure distribution on africtional surface[J]. Materials Science and Engineering A, 2008(1), 483:456-459.
[11] HWANG P, WU X. Investigation of temperature and thermal stress in ventilated disc brake based on 3D thermo-mechanical coupling model[J]. Journal of Mechanical Science & Technology, 2010, 24(1):81-84.
[12] 林谢昭,高诚辉,黄健萌.制动工况参数对制动盘摩擦温度场分布的影响[J].工程设计学报,2006,13(1):46-48. LIN Xie-zhao, GAO Cheng-hui, HUANG Jian-meng. Effects of operating condition parameters on distribution of friction temperature field on brake disc[J]. Chinese Journal of Engineering Design, 2006, 13(1):46-48.
[13] 夏德茂,奚鹰,周亚红.热载荷确定方法对制动盘温度场影响的研究[J].中国工程机械学报,2015,15(3):388-393. XIA De-mao, XI Ying, ZHOU Ya-hong. Impact of thermal loading determination on brake disc temperature field[J]. Chinese Journal of Construction Machinery, 2015, 15(3):388-393.
[14] CUI Jian-zhong, WANG Cun-tang, XIE Fang-wei, et al. Numerical investigation on transient thermal behavior of multidisk friction pairs in hydro-viscous drive[J]. Applied Thermal Engineering, 2014, 67(1/2):409-422.
[15] 农万华,高飞,符蓉.摩擦块形状对制动盘摩擦温度及热应力分布的影响[J].润滑与密封,2012,37(8):52-56. NONG Wan-hua, GAO Fei, FU Rong. Influence of brake pad shape on friction temperature and thermal stress of brake disc[J]. Lubrication Engineering, 2012, 37(8):52-56.
[16] 张扬,张力孟,春玲.汽车摩擦材料用增强纤维的研究现状与发展趋势[J].北京工商大学学报,2006,24(5):19-31. ZHANG Yang, ZHANG Li-meng, CHUN Ling. Development of reinforcing fiber used in automotive friction material[J]. Journal of Beijing Technology and Business University, 2006, 24(5):19-31.
[17] WAGNER A, GOTTFRIED S K, HAGEDORN P. Structural optimization of an asymmetric automotive brake disc with cooling channels to avoid squeal[J]. Journal of Sound and Vibration, 2014, 333(7):1888-1898.
[18] DUZGUN M. Investigation of thermo-structural behaviors of different ventilation applications on brake discs[J]. Journal of Mechanical Science & Technology, 2012, 26(1):235-240.
[19] HAN Chang-bao, DU Wei-ming, ZHANG Chi. Harvesting energy from automobile brake in contact and non-contact mode by conjunction of triboelectrication and electrostatic-induction processes[J]. Nano Energy, 2014, 6:59-65. |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|