Please wait a minute...
工程设计学报  2025, Vol. 32 Issue (6): 822-830    DOI: 10.3785/j.issn.1006-754X.2025.05.129
机器人与机构设计     
旋转纳米运动柔性解耦机构的设计与分析
慕锐(),赖磊捷()
上海工程技术大学 机械与汽车工程学院,上海 201620
Design and analysis of flexible decoupling mechanism for rotational nano-motion
Rui MU(),Leijie LAI()
School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
 全文: PDF(3601 KB)   HTML
摘要:

针对应用于微纳米定位领域的并联柔性机构存在旋转运动难以与其他自由度实现解耦以形成独立驱动单元的问题,以由簧片梁式平行四边形机构正交组合而成的旋转运动解耦机构为基础,对其进行扩展,将簧片梁替换为圆弧梁,设计了一系列基于圆弧梁的旋转纳米运动柔性解耦机构,并对其进行柔度建模与性能测试。首先,介绍了圆弧梁高度不同的柔性解耦机构构型,其由完全相同的上下两部分正交构成,通过充分利用圆弧梁在各自由度方向上的柔度特性,以实现对包含平动在内的多个耦合自由度的解耦。然后,基于柔度矩阵法对柔性解耦机构进行理论建模,确定各机构的尺寸参数并得到其输出柔度。最后,通过有限元分析和实验相结合的方法对柔度理论模型的准确性进行了验证,并比较了不同柔性解耦机构的解耦能力。结果表明:各柔性解耦机构柔度的有限元分析和实验结果与理论计算结果的相对误差均在10%以内,且其解耦性能与两侧圆弧梁的高度成正比关系。这类柔性解耦机构可应用于多自由度并联微纳米定位平台的柔性机构设计,具有一定实用价值。

关键词: 旋转运动柔性解耦机构柔度矩阵法圆弧梁有限元分析    
Abstract:

Aiming at the problem that parallel flexible mechanisms applied in micro/nano-positioning fields struggle to decouple rotational motion from other degrees of freedom to form independent actuation units, the rotational motion decoupling mechanism based on orthogonal arrangements of reed-beam parallelogram mechanisms is extended. By replacing reed beams with arc beams, a series of flexible rotational nano-motion decoupling mechanisms based on arc beams are designed, and their compliance modeling and performance testing are conducted. Firstly, the configurations of flexible decoupling mechanisms with different arc beam heights were introduced. Each mechanism was composed of two identical orthogonal upper and lower parts, which fully utilized the compliance characteristics of arc beams in various degrees of freedom, enabling decoupling among multiple coupled degrees of freedom, including translational motions. Then, theoretical modeling of the flexible decoupling mechanisms was performed based on the compliance matrix method to determine their dimensional parameters and derive their output compliance. Finally, the accuracy of the theoretical compliance models was validated by combining finite element analysis with experiments, and the decoupling capabilities of different mechanisms were compared. The results showed that the relative errors between the finite element analysis and experimental results and the theoretical calculation results of each flexible decoupling mechanism's compliance were within 10%, and its decoupling performance was positively correlated with the height of arc beams on both sides. This type of flexible decoupling mechanism can be applied to the flexible mechanism design for multi-degree-of-freedom parallel micro/nano-positioning platforms, which has certain practical value.

Key words: rotational motion    flexible decoupling mechanism    compliance matrix method    arc beam    finite element analysis
收稿日期: 2025-04-03 出版日期: 2025-12-30
CLC:  TH 112.5  
基金资助: 国家自然科学基金资助项目(52475063)
通讯作者: 赖磊捷     E-mail: mur3721@163.com;lailj@sues.edu.cn
作者简介: 慕 锐(2001—),男,硕士生,从事柔性机构设计研究,E-mail: mur3721@163.com,https://orcid.org/0009-0003-1791-2495
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
慕锐
赖磊捷

引用本文:

慕锐,赖磊捷. 旋转纳米运动柔性解耦机构的设计与分析[J]. 工程设计学报, 2025, 32(6): 822-830.

Rui MU,Leijie LAI. Design and analysis of flexible decoupling mechanism for rotational nano-motion[J]. Chinese Journal of Engineering Design, 2025, 32(6): 822-830.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2025.05.129        https://www.zjujournals.com/gcsjxb/CN/Y2025/V32/I6/822

图1  4种柔性解耦机构的构型
图2  柔性解耦机构变形原理示意
图3  圆弧梁的局部坐标系和流动坐标系
图4  柔性解耦机构H9的关键尺寸参数与坐标系
图5  柔性解耦机构柔度模型
图6  柔性解耦机构H6的坐标系建立
参数数值参数数值
l18h217
t1r19
f1、 p19r29.5
h117r310.8
表1  柔性解耦机构尺寸参数 (mm)
图7  柔性解耦机构H9的静力学仿真结果
机构柔度有限元仿真值理论计算值相对误差/%
H9Cx-Fx1.34×10-51.41×10-55.2
Cy-Fy2.43×10-52.52×10-53.7
Cθz-Mz2.52×10-32.63×10-34.4
H6Cx-Fx7.45×10-67.67×10-62.9
Cy-Fy1.43×10-51.52×10-56.3
Cθz-Mz1.65×10-31.71×10-33.6
H3Cx-Fx4.94×10-65.13×10-63.8
Cy-Fy8.71×10-68.92×10-62.4
Cθz-Mz1.55×10-31.61×10-33.9
H0Cx-Fx2.63×10-62.82×10-67.2
Cy-Fy3.24×10-63.31×10-62.2
Cθz-Mz2.33×10-32.53×10-38.6
表2  各柔性解耦机构的输出柔度 (m/N或rad/(N·m))
机构解耦能力参数η
有限元仿真值理论计算值
H90.007 40.007 5
H60.006 70.006 7
H30.004 50.004 3
H00.001 30.001 2
表3  柔性解耦机构解耦能力比较
图8  柔性解耦机构柔度测试实验
图9  柔性解耦机构平动柔度实验结果
机构旋转角度/rad扭转柔度/[rad/(N·m)]
H90.014 82.467×10-3
H60.009 71.617×10-3
H30.008 41.467×10-3
H00.013 62.267×10-3
表4  柔性解耦机构扭转柔度实验结果
  
[1] 王陈, 孟宪昱, 于瀛洁, 等. 三维微纳米台阶高精度光学显微测量量化表征[J]. 光学 精密工程, 2022, 30(6): 651-658. doi:10.37188/OPE.20223006.0651
WANG C, MENG X Y, YU Y J, et al. High-accuracy characterization of areal micro-nano steps measured with optical microscopes[J]. Optics and Precision Engineering, 2022, 30(6): 651-658.
doi: 10.37188/OPE.20223006.0651
[2] XIAO R J, XU M L, SHAO S B, et al. Design and wide-bandwidth control of large aperture fast steering mirror with integrated-sensing unit[J]. Mechanical Systems and Signal Processing, 2019, 126: 211-226.
[3] 刘昊, 赖磊捷. 大行程推拉电磁驱动微定位平台的内环阻尼与迭代学习控制[J]. 机械科学与技术, 2024, 43(7): 1238-1243.
LIU H, LAI L J. Inner loop damping and iterative learning control of a large stroke micro-positioning stage driven by push-pull electromagnetic actuators[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(7): 1238-1243.
[4] TEO T J, YANG G L, CHEN I M. A large deflection and high payload flexure-based parallel manipulator for UV nanoimprint lithography: Part I. modeling and analyses[J]. Precision Engineering, 2014, 38(4): 861-871.
[5] 张旭, 赖磊捷, 李朋志, 等. 电磁驱动柔顺微定位平台闭环频域逆迭代学习控制[J]. 光学 精密工程, 2021, 29(9): 2149-2157. doi:10.37188/OPE.20212909.2149
ZHANG X, LAI L J, LI P Z, et al. Closed-loop inverse iterative learning control in frequency-domain for electromagnetic driven compliant micro-positioning platform[J]. Optics and Precision Engineering, 2021, 29(9): 2149-2157.
doi: 10.37188/OPE.20212909.2149
[6] 吴俊杰, 李源. 基于纳米测量机的微结构三维坐标测量[J]. 光学 精密工程, 2020, 28(10): 2252-2259. doi:10.37188/ope.20202810.2252
WU J J, LI Y. Three-dimensional coordinate measurement of microstructures based on nano measuring machine[J]. Optics and Precision Engineering, 2020, 28(10): 2252-2259.
doi: 10.37188/ope.20202810.2252
[7] WANG P Y, XU Q S. Design of a flexure-based constant-force XY precision positioning stage[J]. Mechanism and Machine Theory, 2017, 108: 1-13.
[8] SHEN X, ZHANG L, QIU D M. A lever-bridge combined compliant mechanism for translation amplification[J]. Precision Engineering, 2021, 67: 383-392.
[9] KANG S, LEE M G, CHOI Y M. Six degrees-of-freedom direct-driven nanopositioning stage using crab-leg flexures[J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(2): 513-525.
[10] YANG Z D, LEE R, HOPKINS J B. Hexblade positioner: a fast large-range six-axis motion stage[J]. Precision Engineering, 2022, 76: 199-207.
[11] 陈云壮, 赖磊捷, 李朋志, 等. 全簧片式空间大行程并联柔性微定位平台及其轨迹控制[J]. 光学 精密工程, 2023, 31(18): 2675-2686. doi:10.37188/ope.20233118.2675
CHEN Y Z, LAI L J, LI P Z, et al. Full leaf-spring type spatial large-stroke parallel flexure micro-positioning stage and trajectory control[J]. Optics and Precision Engineering, 2023, 31(18): 2675-2686.
doi: 10.37188/ope.20233118.2675
[12] LAI L J, GU G Y, ZHU L M. Design and control of a decoupled two degree of freedom translational parallel micro-positioning stage[J]. Review of Scientific Instruments, 2012, 83(4): 045105.
[13] WU H T, LAI L J, ZHANG L Q, et al. A novel compliant XY micro-positioning stage using bridge-type displacement amplifier embedded with Scott-Russell mechanism[J]. Precision Engineering, 2022, 73: 284-295.
[14] XU Q S. Design and development of a compact flexure-based XY precision positioning system with centimeter range[J]. IEEE Transactions on Industrial Electronics, 2014, 61(2): 893-903.
[15] LU S S, YAN P, ZHANG B. Long stroke displacement measurement with reduced coupling error supporting high precision control of a beam flexure-based micro-stage[J]. Review of Scientific Instruments, 2020, 91(7): 073701.
[16] YU H T, ZHANG C, YANG B, et al. The design and kinetostatic modeling of 3PPR planar compliant parallel mechanism based on compliance matrix method[J]. Review of Scientific Instruments, 2019, 90(4): 045102.
[17] YANG M, SUN M Y, WU Z, et al. Design of a redundant actuated 4-PPR planar 3-DOF compliant nanopositioning stage[J]. Precision Engineering, 2023, 82: 68-79.
[18] LI H Y, LIU Y J, WANG Z P, et al. A constraint-flow based method of synthesizing XYθ compliant parallel mechanisms with decoupled motion and actuation characteristics[J]. Mechanism and Machine Theory, 2022, 178: 105085.
[19] AL-JODAH A, SHIRINZADEH B, GHAFARIAN M, et al. Design, modeling, and control of a large range 3-DOF micropositioning stage[J]. Mechanism and Machine Theory, 2021, 156: 104159.
[20] 谢超, 陈云壮, 石光楠, 等. 正交簧片型大行程柔性球铰设计及柔度分析[J]. 工程设计学报, 2023, 30(5): 626-633.
XIE C, CHEN Y Z, SHI G N, et al. Design and compliance analysis of large stroke flexible ball hinge with orthogonal reeds[J]. Chinese Journal of Engineering Design, 2023, 30(5): 626-633.
[1] 张绪亮,史君林,董仁,练章华,查磊,蒋洪波. 175 MPa超高压井口6BX型法兰结构评价及轻量化设计[J]. 工程设计学报, 2025, 32(4): 499-513.
[2] 蔡锦云,刘忠,王罡,赵庆斌,安宁,杜旭伟,李东良,李源周. 基于响应面法的绞磨机辅助拉尾绳装置优化设计[J]. 工程设计学报, 2024, 31(2): 178-187.
[3] 谢超,陈云壮,石光楠,赖磊捷. 正交簧片型大行程柔性球铰设计及柔度分析[J]. 工程设计学报, 2023, 30(5): 626-633.
[4] 张涛,王开松,唐威,秦可成,刘阳,石雨豪,邹俊. 电流体泵驱动的柔性弯曲执行器的设计及分析[J]. 工程设计学报, 2023, 30(4): 467-475.
[5] 李琴,闫瑞,黄志强,李刚. 电驱可控震源驱动电机匹配设计与优化研究[J]. 工程设计学报, 2023, 30(2): 172-181.
[6] 李三平,孙腾佳,袁龙强,吴立国. 气动软体采摘机械手设计及实验研究[J]. 工程设计学报, 2022, 29(6): 684-694.
[7] 赵致勃,顾大强,李立新,张靖. 基于接触应力优化的摆线轮修形设计[J]. 工程设计学报, 2022, 29(6): 713-719.
[8] 张正峰,宋小雨,袁晓磊,陈文娟,张伟东. Al/CFRP混合薄壁结构耐撞性能可靠性优化设计[J]. 工程设计学报, 2022, 29(6): 720-730.
[9] 孙光明,王奕苗,万仟,弓堃,汪文津,赵坚. 考虑装配变形的精密机床床身优化设计[J]. 工程设计学报, 2022, 29(3): 318-326.
[10] 丰飞,傅雨晨,范伟,马举. 三角混合两级杠杆微位移放大机构的设计及性能分析[J]. 工程设计学报, 2022, 29(2): 161-167.
[11] 陈洪月, 张站立, 吕掌权. 线性压缩机圆柱臂盘簧的设计及性能研究[J]. 工程设计学报, 2021, 28(4): 504-510.
[12] 王成军, 李帅. 三关节式软体驱动器的设计及其弯曲性能分析[J]. 工程设计学报, 2021, 28(2): 227-234.
[13] 周超, 秦瑞江, 芮晓明. 风载荷作用下V形绝缘子串的力学特性分析[J]. 工程设计学报, 2021, 28(1): 95-104.
[14] 黄伟, 徐建, 陆新征, 胡明祎, 廖文杰. 动力装备和建筑楼盖的动力吸振研究[J]. 工程设计学报, 2021, 28(1): 25-32.
[15] 周超, 王阳, 芮晓明. 500 kV输电线路跳线风偏有限元分析与试验研究[J]. 工程设计学报, 2020, 27(6): 713-719.