| 机器人与机构设计 |
|
|
|
|
| 旋转纳米运动柔性解耦机构的设计与分析 |
慕锐( ),赖磊捷( ) |
| 上海工程技术大学 机械与汽车工程学院,上海 201620 |
|
| Design and analysis of flexible decoupling mechanism for rotational nano-motion |
Rui MU( ),Leijie LAI( ) |
| School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai 201620, China |
| [1] |
王陈, 孟宪昱, 于瀛洁, 等. 三维微纳米台阶高精度光学显微测量量化表征[J]. 光学 精密工程, 2022, 30(6): 651-658. doi:10.37188/OPE.20223006.0651 WANG C, MENG X Y, YU Y J, et al. High-accuracy characterization of areal micro-nano steps measured with optical microscopes[J]. Optics and Precision Engineering, 2022, 30(6): 651-658.
doi: 10.37188/OPE.20223006.0651
|
| [2] |
XIAO R J, XU M L, SHAO S B, et al. Design and wide-bandwidth control of large aperture fast steering mirror with integrated-sensing unit[J]. Mechanical Systems and Signal Processing, 2019, 126: 211-226.
|
| [3] |
刘昊, 赖磊捷. 大行程推拉电磁驱动微定位平台的内环阻尼与迭代学习控制[J]. 机械科学与技术, 2024, 43(7): 1238-1243. LIU H, LAI L J. Inner loop damping and iterative learning control of a large stroke micro-positioning stage driven by push-pull electromagnetic actuators[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(7): 1238-1243.
|
| [4] |
TEO T J, YANG G L, CHEN I M. A large deflection and high payload flexure-based parallel manipulator for UV nanoimprint lithography: Part I. modeling and analyses[J]. Precision Engineering, 2014, 38(4): 861-871.
|
| [5] |
张旭, 赖磊捷, 李朋志, 等. 电磁驱动柔顺微定位平台闭环频域逆迭代学习控制[J]. 光学 精密工程, 2021, 29(9): 2149-2157. doi:10.37188/OPE.20212909.2149 ZHANG X, LAI L J, LI P Z, et al. Closed-loop inverse iterative learning control in frequency-domain for electromagnetic driven compliant micro-positioning platform[J]. Optics and Precision Engineering, 2021, 29(9): 2149-2157.
doi: 10.37188/OPE.20212909.2149
|
| [6] |
吴俊杰, 李源. 基于纳米测量机的微结构三维坐标测量[J]. 光学 精密工程, 2020, 28(10): 2252-2259. doi:10.37188/ope.20202810.2252 WU J J, LI Y. Three-dimensional coordinate measurement of microstructures based on nano measuring machine[J]. Optics and Precision Engineering, 2020, 28(10): 2252-2259.
doi: 10.37188/ope.20202810.2252
|
| [7] |
WANG P Y, XU Q S. Design of a flexure-based constant-force XY precision positioning stage[J]. Mechanism and Machine Theory, 2017, 108: 1-13.
|
| [8] |
SHEN X, ZHANG L, QIU D M. A lever-bridge combined compliant mechanism for translation amplification[J]. Precision Engineering, 2021, 67: 383-392.
|
| [9] |
KANG S, LEE M G, CHOI Y M. Six degrees-of-freedom direct-driven nanopositioning stage using crab-leg flexures[J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(2): 513-525.
|
| [10] |
YANG Z D, LEE R, HOPKINS J B. Hexblade positioner: a fast large-range six-axis motion stage[J]. Precision Engineering, 2022, 76: 199-207.
|
| [11] |
陈云壮, 赖磊捷, 李朋志, 等. 全簧片式空间大行程并联柔性微定位平台及其轨迹控制[J]. 光学 精密工程, 2023, 31(18): 2675-2686. doi:10.37188/ope.20233118.2675 CHEN Y Z, LAI L J, LI P Z, et al. Full leaf-spring type spatial large-stroke parallel flexure micro-positioning stage and trajectory control[J]. Optics and Precision Engineering, 2023, 31(18): 2675-2686.
doi: 10.37188/ope.20233118.2675
|
| [12] |
LAI L J, GU G Y, ZHU L M. Design and control of a decoupled two degree of freedom translational parallel micro-positioning stage[J]. Review of Scientific Instruments, 2012, 83(4): 045105.
|
| [13] |
WU H T, LAI L J, ZHANG L Q, et al. A novel compliant XY micro-positioning stage using bridge-type displacement amplifier embedded with Scott-Russell mechanism[J]. Precision Engineering, 2022, 73: 284-295.
|
| [14] |
XU Q S. Design and development of a compact flexure-based XY precision positioning system with centimeter range[J]. IEEE Transactions on Industrial Electronics, 2014, 61(2): 893-903.
|
| [15] |
LU S S, YAN P, ZHANG B. Long stroke displacement measurement with reduced coupling error supporting high precision control of a beam flexure-based micro-stage[J]. Review of Scientific Instruments, 2020, 91(7): 073701.
|
| [16] |
YU H T, ZHANG C, YANG B, et al. The design and kinetostatic modeling of 3PPR planar compliant parallel mechanism based on compliance matrix method[J]. Review of Scientific Instruments, 2019, 90(4): 045102.
|
| [17] |
YANG M, SUN M Y, WU Z, et al. Design of a redundant actuated 4-PPR planar 3-DOF compliant nanopositioning stage[J]. Precision Engineering, 2023, 82: 68-79.
|
| [18] |
LI H Y, LIU Y J, WANG Z P, et al. A constraint-flow based method of synthesizing XYθ compliant parallel mechanisms with decoupled motion and actuation characteristics[J]. Mechanism and Machine Theory, 2022, 178: 105085.
|
| [19] |
AL-JODAH A, SHIRINZADEH B, GHAFARIAN M, et al. Design, modeling, and control of a large range 3-DOF micropositioning stage[J]. Mechanism and Machine Theory, 2021, 156: 104159.
|
| [20] |
谢超, 陈云壮, 石光楠, 等. 正交簧片型大行程柔性球铰设计及柔度分析[J]. 工程设计学报, 2023, 30(5): 626-633. XIE C, CHEN Y Z, SHI G N, et al. Design and compliance analysis of large stroke flexible ball hinge with orthogonal reeds[J]. Chinese Journal of Engineering Design, 2023, 30(5): 626-633.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|