Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (10): 2115-2124    DOI: 10.3785/j.issn.1008-973X.2025.10.012
    
Pumps and valves joint optimization control in complex water conveyance system based on artificial rabbits optimization algorithm
Mengyuan HAO1,2(),Leike ZHANG1,2,Xiaolian LIU1,2,*(),Xueni WANG1,2,Yu TIAN3
1. College of Hydro Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
2. Shanxi Key Laboratory of Cooperative Utilization for Basin Water Resources, Taiyuan 030024, China
3. State Key Laboratory of Water Cycle and Water Security, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
Download: HTML     PDF(1744KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

For a water conveyance project that combined pressurization and gravity flow, it is difficult to balance the global safety problem only by controlling a single water facility. The issue of joint control of pumps and valves under continuous shutdown conditions was discussed. The shutdown interval between parallel pumps, the closing law of the pump discharge valves and the closing process of the terminal control valves were considered, and their impacts on the extreme water hammer pressure in the pipeline system and the water level in the high-elevated pool were analyzed. The joint control of pumps and valves optimization model was established, which was coupled with the hydraulic calculation method. A non-dominated sorting artificial rabbits optimization algorithm (NSARO) was proposed based on non-dominated sorting and crowding distance. The excellent convergence of the NSARO in the joint optimization and control of pumps and valves was verified by the hypervolume (HV) index. Grey relational analysis (GRA) was used to pinpoint the optimal scheme from the Pareto solution set. In the case of an actual project, the NSARO-GRA optimization solution decision-making method was used to obtain the optimal scheme. Compared with the current scheme, the maximum positive pressure head, maximum negative pressure head in the pipeline system, and water level fluctuation value in the high-elevated pool of the optimal scheme have been reduced by 13.57, 0.29 and 5.79 m, respectively.



Key wordsjoint operation of pumps and valves      multi-objective optimization      pressurized water transmission system      artificial rabbits optimization algorithm      grey relational analysis (GRA)     
Received: 14 September 2024      Published: 27 October 2025
CLC:  TV 675  
  TV 672.2  
Fund:  国家自然科学基金资助项目(52379091);山西省水利技术研究推广补助项目(2024GM21);山西省基础研究计划项目(202203021222112).
Corresponding Authors: Xiaolian LIU     E-mail: 1213264132@qq.com;liuxiaolian@tyut.edu.cn
Cite this article:

Mengyuan HAO,Leike ZHANG,Xiaolian LIU,Xueni WANG,Yu TIAN. Pumps and valves joint optimization control in complex water conveyance system based on artificial rabbits optimization algorithm. Journal of ZheJiang University (Engineering Science), 2025, 59(10): 2115-2124.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.10.012     OR     https://www.zjujournals.com/eng/Y2025/V59/I10/2115


基于人工兔算法的复杂输水系统泵阀联合优化调控

在泵站加压提水结合重力输水系统中,单个水利设施调控难以兼顾全线安全,为此以连续停机工况为例,综合考虑机组停机间隔、泵后阀关闭规律及末端控制阀调节规律对管道系统压力极值及高位水池水位波动的影响,建立耦合水力计算模型的泵阀联合优化调控模型,提出基于非支配排序及拥挤度距离的非支配排序人工兔优化算法(NSARO). 超体积指标(HV)验证结果表明,NSARO在泵阀联合优化调控中具有良好的收敛性. 利用灰色关联度分析法(GRA)对所获Pareto解集进行方案优选. 以实际工程为例,利用NSARO-GRA优化求解决策方法得出优选方案,相较于现状方案,管道系统的最大正压力水头、最大负压力水头以及高位水池的水位波动值分别降低了13.57、0.29和5.79 m.


关键词: 泵阀联合调控,  多目标优化,  有压输水系统,  人工兔优化算法,  灰色关联度分析法(GRA) 
Fig.1 Schematic diagram of water conveyance project
Fig.2 Schematic diagram of pump continuous shutdown condition
Fig.3 Schematic diagram of non-dominated sorting and crowding distance
Fig.4 Solution process of pumps and valves joint optimization control using non-dominated sorting artificial rabbits optimization algorithm
Fig.5 Iterative process curve of hypervolume
Fig.6 Optimization results of pump and valve joint optimization control model
Fig.7 Matrix plot of Spearman’s correlation coefficient for objective function
Fig.8 Grey relational degree of Pareto front solutions
方案决策变量目标函数
t1/sη/%t2/s?t1/s?t2/sβ1/%β2/%Hmax/mHmin/mZmax?Zmin/m
现状方案303360600600106.13?4.677.98
优选方案123687414572351392.56?4.382.19
Tab.1 Joint control strategy for current scheme and optimal scheme
Fig.9 Control law comparison of pump discharge valve and terminal control valve of different schemes
Fig.10 Comparison of pipeline pressure envelopes
Fig.11 Water level and volume flow rate curves of high-elevated pool
[1]   石林, 张健, 俞晓东, 等 长距离多支线输水系统稳压塔降高方案研究[J]. 华中科技大学学报: 自然科学版, 2023, 51 (8): 67- 73
SHI Lin, ZHANG Jian, YU Xiaodong, et al Study on reducing height of surge tank in long-distance and multi-branch water conveyance system[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2023, 51 (8): 67- 73
[2]   汪顺生, 郭新源 基于Bentley Hammer的气囊式空气罐的水锤防护研究[J]. 振动与冲击, 2022, 41 (6): 177- 182
WANG Shunsheng, GUO Xinyuan Water hammer protection effect of gasbag-type pneumatic tank based on the analysis using the Bentley Hammer software[J]. Journal of Vibration and Shock, 2022, 41 (6): 177- 182
[3]   ZHANG T, ZHOU J, YANG X, et al Multi-objective optimization and decision-making of the combined control law of guide vane and pressure regulating valve for hydroelectric unit[J]. Energy Science and Engineering, 2022, 10 (2): 472- 487
doi: 10.1002/ese3.1038
[4]   WAN W, LI F Sensitivity analysis of operational time differences for a pump–valve system on a water hammer response[J]. Journal of Pressure Vessel Technology, 2016, 138 (1): 011303
doi: 10.1115/1.4031202
[5]   丁梓恒, 俞晓东, 马世波, 等 泵站加压与重力自流联合供水工程的停泵水锤防护[J]. 排灌机械工程学报, 2022, 40 (4): 338- 344
DING Ziheng, YU Xiaodong, MA Shibo, et al Pump failure water hammer protection of pumping station pressurization and gravity combined water supply project[J]. Journal of Drainage and Irrigation Machinery Engineering, 2022, 40 (4): 338- 344
[6]   LIU X, LIU Z, HOU X, et al A parallel multi-objective optimization based on adaptive surrogate model for combined operation of multiple hydraulic facilities in water diversion project[J]. Journal of Hydroinformatics, 2024, 26 (6): 1351- 1369
doi: 10.2166/hydro.2024.285
[7]   FENG T, ZHANG D, SONG P, et al Numerical research on water hammer phenomenon of parallel pump-valve system by coupling FLUENT with RELAP5[J]. Annals of Nuclear Energy, 2017, 109: 318- 326
doi: 10.1016/j.anucene.2017.05.049
[8]   YAN P, ZHANG Z, LEI X, et al A multi-objective optimal control model of cascade pumping stations considering both cost and safety[J]. Journal of Cleaner Production, 2022, 345: 131171
doi: 10.1016/j.jclepro.2022.131171
[9]   叶倩琳, 王万良, 王铮 多目标粒子群优化算法及其应用研究综述[J]. 浙江大学学报: 工学版, 2024, 58 (6): 1107- 1120
YE Qianlin, WANG Wanliang, WANG Zheng Survey of multi-objective particle swarm optimization algorithms and their applications[J]. Journal of Zhejiang University: Engineering Science, 2024, 58 (6): 1107- 1120
[10]   冯仲恺, 廖胜利, 牛文静, 等 改进量子粒子群算法在水电站群优化调度中的应用[J]. 水科学进展, 2015, 26 (3): 413- 422
FENG Zhongkai, LIAO Shengli, NIU Wenjing, et al Improved quantum-behaved particle swarm optimization and its application in optimal operation of hydropower stations[J]. Advances in Water Science, 2015, 26 (3): 413- 422
[11]   WANG L, CAO Q, ZHANG Z, et al Artificial rabbits optimization: a new bio-inspired meta-heuristic algorithm for solving engineering optimization problems[J]. Engineering Applications of Artificial Intelligence, 2022, 114: 105082
doi: 10.1016/j.engappai.2022.105082
[12]   OZKAYA B, DUMAN S, KAHRAMAN H T, et al Optimal solution of the combined heat and power economic dispatch problem by adaptive fitness-distance balance based artificial rabbits optimization algorithm[J]. Expert Systems with Applications, 2024, 238: 122272
doi: 10.1016/j.eswa.2023.122272
[13]   KHARRICH M, HASSAN M H, KAMEL S, et al Designing an optimal hybrid microgrid system using a leader artificial rabbits optimization algorithm for domestic load in Guelmim city, Morocco[J]. Renewable Energy, 2024, 223: 120011
doi: 10.1016/j.renene.2024.120011
[14]   GUO Y, TANG Q, DARKWA J, et al A novel prediction model for integrated district energy system based on secondary decomposition and artificial rabbits optimization[J]. Energy and Buildings, 2024, 310: 114106
doi: 10.1016/j.enbuild.2024.114106
[15]   TIAN Y, ZHAO Y, WANG Z, et al Non-dominated sorting artificial rabbit multi-objective sizing optimization for a conceptual powertrain of a 6×4 battery electric tractor truck[J]. Energy, 2024, 304: 132009
doi: 10.1016/j.energy.2024.132009
[16]   ZHANG X, TIAN Y, JIN Y Approximate non-dominated sorting for evolutionary many-objective optimization[J]. Information Sciences, 2016, 369: 14- 33
doi: 10.1016/j.ins.2016.06.007
[17]   TIAN Y, WANG H, ZHANG X, et al Effectiveness and efficiency of non-dominated sorting for evolutionary multi- and many-objective optimization[J]. Complex and Intelligent Systems, 2017, 3 (4): 247- 263
doi: 10.1007/s40747-017-0057-5
[18]   WANG R, ZHOU Z, ISHIBUCHI H, et al Localized weighted sum method for many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2018, 22 (1): 3- 18
doi: 10.1109/TEVC.2016.2611642
[19]   DOS SANTOS P H, NEVES S M, SANT’ANNA D O, et al The analytic hierarchy process supporting decision making for sustainable development: an overview of applications[J]. Journal of Cleaner Production, 2019, 212: 119- 138
doi: 10.1016/j.jclepro.2018.11.270
[20]   KOKSALMIS E, KABAK Ö Deriving decision makers’ weights in group decision making: an overview of objective methods[J]. Information Fusion, 2019, 49: 146- 160
doi: 10.1016/j.inffus.2018.11.009
[21]   HU Y, WU L, SHI C, et al Research on optimal decision-making of cloud manufacturing service provider based on grey correlation analysis and TOPSIS[J]. International Journal of Production Research, 2020, 58 (3): 748- 757
doi: 10.1080/00207543.2019.1600760
[22]   LI W, REN X, DING S, et al A multi-criterion decision making for sustainability assessment of hydrogen production technologies based on objective grey relational analysis[J]. International Journal of Hydrogen Energy, 2020, 45 (59): 34385- 34395
doi: 10.1016/j.ijhydene.2019.11.039
[23]   刘忠, 陈星宇, 邹淑云, 等 计及碳排放的风-光-抽水蓄能系统容量优化配置方法[J]. 电力系统自动化, 2021, 45 (22): 9- 18
LIU Zhong, CHEN Xingyu, ZOU Shuyun, et al Optimal capacity configuration method for wind-photovoltaic-pumped-storage system considering carbon emission[J]. Automation of Electric Power Systems, 2021, 45 (22): 9- 18
[24]   YAZDANI M, KAHRAMAN C, ZARATE P, et al A fuzzy multi attribute decision framework with integration of QFD and grey relational analysis[J]. Expert Systems with Applications, 2019, 115: 474- 485
doi: 10.1016/j.eswa.2018.08.017
[25]   DEB K, PRATAP A, AGARWAL S, et al A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6 (2): 182- 197
doi: 10.1109/4235.996017
[26]   张健, 俞晓东, 朱永忠 长距离供水工程的关阀水锤与线路充填[J]. 水力发电学报, 2010, 29 (2): 183- 189
ZHANG Jian, YU Xiaodong, ZHU Yongzhong Study on water-hammer and line packing in long-distance water-supply project[J]. Journal of Hydroelectric Engineering, 2010, 29 (2): 183- 189
[27]   王眺, 詹航, 万五一 长距离输水系统停泵水锤防护多目标优化研究[J]. 水力发电学报, 2022, 41 (12): 90- 99
WANG Tiao, ZHAN Hang, WAN Wuyi Multi-objective optimization method for water hammer protection against pump failure in long-distance water transfer systems[J]. Journal of Hydroelectric Engineering, 2022, 41 (12): 90- 99
[28]   梁兴, 张剑焜, 李志红, 等 超驼峰工况下轴流泵站事故停泵防护方案寻优[J]. 排灌机械工程学报, 2020, 38 (10): 1010- 1015
LIANG Xing, ZHANG Jiankun, LI Zhihong, et al Optimizing protection scheme for accident shutdown of axial flow pumping station under super hump conditions[J]. Journal of Drainage and Irrigation Machinery Engineering, 2020, 38 (10): 1010- 1015
[29]   杜畅, 刘喜元, 张健, 等 泵后管线先降后升的长距离输水系统水锤防护[J]. 排灌机械工程学报, 2022, 40 (12): 1248- 1253
DU Chang, LIU Xiyuan, ZHANG Jian, et al Long-distance water hammer protection of pipeline after pump being first lowered and then raised[J]. Journal of Drainage and Irrigation Machinery Engineering, 2022, 40 (12): 1248- 1253
[30]   KUO Y, YANG T, HUANG G W The use of grey relational analysis in solving multiple attribute decision-making problems[J]. Computers and Industrial Engineering, 2008, 55 (1): 80- 93
doi: 10.1016/j.cie.2007.12.002
[31]   GÜLMEZ B Stock price prediction with optimized deep LSTM network with artificial rabbits optimization algorithm[J]. Expert Systems with Applications, 2023, 227: 120346
doi: 10.1016/j.eswa.2023.120346
[32]   AWADALLAH M A, BRAIK M S, AL-BETAR M A, et al An enhanced binary artificial rabbits optimization for feature selection in medical diagnosis[J]. Neural Computing and Applications, 2023, 35 (27): 20013- 20068
doi: 10.1007/s00521-023-08812-6
[1] Yabo LUO,Shaolong YU,Feng ZHANG,Cunrong LI. Improved migrating bird algorithm for re-entrant hybrid flowshop scheduling problem with lot streaming[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(8): 1598-1607.
[2] Yu WANG,Chunrong MA,Mingyue ZHAO. Collaborative multi-task assignment of heterogeneous UAVs based on hybrid strategies based multi-objective particle swarm[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(4): 821-831.
[3] Yong LI,Yue WANG,Fuqiang LIU,Baiqing SUN,Kairu LI. Multi-task allocation framework in context of caregiver-robot collaborative elderly care[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(2): 375-383.
[4] Yingfei ZHANG,Xiaobing HU,Hang ZHOU,Xuzeng FENG. Three-dimensional sector automatic design based on improved NSGA-II algorithm[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(2): 413-422.
[5] Tingfang YU,Genli ZHANG,Jiapeng ZHOU,Yicun TANG. Performance analysis and optimization of supercritical CO2 Brayton cycle coupled with organic flash cycle[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(1): 130-140.
[6] Ruoqiong LI,Yuan WENG,Xin LI. Parameter optimization of fractional-order magnetically-coupled resonant bidirectional wireless power transfer system[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(1): 141-151.
[7] Qianlin YE,Wanliang WANG,Zheng WANG. Survey of multi-objective particle swarm optimization algorithms and their applications[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(6): 1107-1120.
[8] Yan ZHAN,Jieya CHEN,Weiguang JIANG,Jiansha LU,Hongtao TANG,Xinyu SONG,Lili XU,Saimiao LIU. Multi-objective workshop material distribution method based on improved NSGA-[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(12): 2510-2519.
[9] Xiao-yan CAO,Min YU,Jin ZHOU,Yun-zhi WANG. Multi-objective optimization design of adjustable rotary fluid damper parameter[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(7): 1439-1449.
[10] Ting-fang YU,Ling SONG. Performance analysis and optimization of supercritical CO2 Brayton cycle waste heat recovery system[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(2): 404-414.
[11] Wan-liang WANG,Zhong-kui CHEN,Fei WU,Zheng WANG,Meng-jiao YU. Dynamic multi-objective optimization algorithm based on individual prediction[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(11): 2133-2146.
[12] Wan-liang WANG,Ya-wen JIN,Jia-cheng CHEN,Guo-qing LI,Ming-zhi HU,Jian-hang DONG. Multi-objective particle swarm optimization algorithm with multi-role and multi-strategy[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 531-541.
[13] Jun-heng XU,Xiao-jun YANG,Bing LI. Design of wing mechanism with variable camber based on cross-spring flexural pivots[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 444-451, 509.
[14] Qi-lin DENG,Juan LU,Yong-hui CHEN,Jian FENG,Xiao-ping LIAO,Jun-yan MA. Optimization method of CNC milling parameters based on deep reinforcement learning[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(11): 2145-2155.
[15] Jun-jie CHEN,Hong-jun LI,Zhang-hua CAO. Performance-aware resource allocation algorithm for core network control plane[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1782-1787.