Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (7): 1523-1531    DOI: 10.3785/j.issn.1008-973X.2025.07.020
    
Causal disentanglement-based domain adaptation for rolling bearing fault diagnosis
Aiying HUANG(),Xiaohui LI,Shuxian SUN,Yiqun ZHU*()
Marketing Service Center, State Grid Tianjin Electric Power Company, Tianjin 300160, China
Download: HTML     PDF(1530KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

To improve the generalization capability of domain adaptive fault diagnosis methods on unlabeled target domains, a fault diagnosis model to uncover the latent causal relationships within vibration signals was proposed. Based on a sequential variational autoencoder (VAE), robust feature representations associated with fault types were learned using fault labels. Guided by the principles of domain labels, factors unrelated to the faults yet reflective of the domain’s data distribution were separated, thereby progressively decoupling the vibration signals causally. The evidence lower bound (ELBO) of the sequential VAE was restructured to effectively guide the decoupling process. By incorporating domain adaptation techniques, the shared fault features’ distance between the source and target domains was brought close in the feature space, enhancing the generalization of the features learned by the encoder. Experimental results on the CWRU and IMS datasets show that the feature decoupling capability of the causal network complements domain adaptation methods, improving the performance of the fault diagnosis model in domain adaptation tasks.



Key wordsrolling bearing      causal disentanglement      variational autoencoder (VAE)      domain adaptation      fault diagnosis     
Received: 20 June 2024      Published: 25 July 2025
CLC:  TP 391  
Fund:  营服-研发2023-03.
Corresponding Authors: Yiqun ZHU     E-mail: haiying2151@126.com;h.h.h1@163.com
Cite this article:

Aiying HUANG,Xiaohui LI,Shuxian SUN,Yiqun ZHU. Causal disentanglement-based domain adaptation for rolling bearing fault diagnosis. Journal of ZheJiang University (Engineering Science), 2025, 59(7): 1523-1531.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.07.020     OR     https://www.zjujournals.com/eng/Y2025/V59/I7/1523


基于因果解耦的域自适应滚动轴承故障诊断

为了提高域自适应故障诊断方法在无标签目标域上的泛化能力,提出发掘振动信号中潜在因果关系的故障诊断模型. 基于序列变分自编码器(VAE),利用故障标签学习与故障类型相关的稳健特征表示. 在域标签的引导下分离出与故障无关但反映数据域分布特性的因素,逐步将振动信号进行因果解耦. 重新构建序列VAE的证据下界(ELBO),以有效引导解耦过程. 结合域自适应技术,拉近源域和目标域共有故障特征在特征空间中的距离,提高特征编码器所学特征的泛化性能. 在CWRU和IMS数据集上的实验结果表明,因果网络的特征解耦能力可与域自适应方法互为补充,增强故障诊断模型在域自适应任务中的性能.


关键词: 滚动轴承,  因果解耦,  变分自编码器(VAE),  域自适应,  故障诊断 
Fig.1 Causal relationship diagrams in fault diagnosis
Fig.2 Disentangled network architecture
Fig.3 Neuron structure of long short-term neural network
Fig.4 Workflow of domain adaption learning
负载条件$l$/Wv/(r·min?1)N1
101 7971 114
2745.701 7721 313
31491.391 7501 313
42237.101 7301 315
Tab.1 Operating parameters of CWRU dataset
迁移任务A/%
BASEDDC[9]CORAL[10]DANN[11]CDAN[13]SFDA[14]本研究
[1]-[2]96.53 ± 0.1295.71 ± 0.4194.52 ± 0.5196.43 ± 0.2397.59 ± 0.1396.83 ± 0.7998.63 ± 0.07
[1]-[3]92.84 ± 0.4995.48 ± 0.2592.34 ± 1.1096.24 ± 0.5399.17 ± 0.1798.63 ± 0.8499.39 ± 0.13
[1]-[4]88.91 ± 0.9392.19 ± 0.5891.56 ± 2.0897.82 ± 0.3698.32 ± 0.2196.25 ± 0.6698.69 ± 0.19
[2]-[1]98.82 ± 0.0798.96 ± 0.4398.33 ± 0.2498.65 ± 0.2099.10 ± 0.2698.25 ± 0.4599.89 ± 0.06
[2]-[3]98.56 ± 0.2197.79 ± 0.2698.82 ± 0.0999.37 ± 0.1899.53 ± 0.0697.22 ± 0.7699.64 ± 0.09
[2]-[4]92.67 ± 0.1893.48 ± 0.9194.72 ± 1.6199.15 ± 0.3298.97 ± 0.2198.62 ± 0.4799.23 ± 0.05
[3]-[1]96.31 ± 0.4296.99 ± 0.7297.53 ± 0.1492.85 ± 0.7199.12 ± 0.1396.09 ± 0.7799.15 ± 0.08
[3]-[2]97.15 ± 0.2998.51 ± 0.4499.49 ± 0.1195.47 ± 0.9398.87 ± 0.2297.53 ± 0.4999.92 ± 0.03
[3]-[4]98.88 ± 0.0699.22 ± 0.3498.28 ± 0.0799.64 ± 0.0999.95 ± 0.1398.85 ± 0.39100.0 ± 0.00
[4]-[1]81.09 ± 1.1384.35 ± 0.8188.37 ± 0.1388.34 ± 0.4592.23 ± 0.1895.62 ± 0.4297.42 ± 0.12
[4]-[2]84.56 ± 0.7589.61 ± 0.7490.43 ± 0.3887.48 ± 0.7391.43 ± 0.6193.26 ± 0.7295.34 ± 0.21
[4]-[3]95.93 ± 0.5396.49 ± 0.6397.03 ± 0.1697.42 ± 0.1698.81 ± 0.0997.31 ± 0.5998.82 ± 0.16
Tab.2 Bearing fault diagnosis accuracy of different methods in twelve transfer tasks
Fig.5 Comparison of cross-dataset transfer performance
Fig.6 Confusion matrix of fault diagnosis results from different methods
Fig.7 Visualization results of t-distributed stochastic neighbor embedding for different fault diagnoses
实验编号$ {L_{{\text{ELBO}}}} $$ {L_{{\text{MK-MMD}}}} $$ {L_{\text{d}}} $A/%
1???64.63
2?+?75.42
3+?+79.62
4+++85.31
Tab.3 Effect of loss functions on diagnostic performance
[1]   高萍. 基于可靠性分析的复杂设备预防性维修决策研究 [D]. 北京: 清华大学, 2008: 1–119.
GAO Ping. The research on preventive maintenance decision of complex equipment based on reliability analysis [D]. Beijing: Tsinghua University, 2008: 1–119.
[2]   GAO Z, CECATI C, DING S X A survey of fault diagnosis and fault-tolerant techniques: Part II: fault diagnosis with knowledge-based and hybrid/active approaches[J]. IEEE Transactions on Industrial Electronics, 2015, 62 (6): 3768- 3774
[3]   YIN S, DING S X, XIE X, et al A review on basic data-driven approaches for industrial process monitoring[J]. IEEE Transactions on Industrial Electronics, 2014, 61 (11): 6418- 6428
doi: 10.1109/TIE.2014.2301773
[4]   CAI B, HUANG L, XIE M Bayesian networks in fault diagnosis[J]. IEEE Transactions on Industrial Informatics, 2017, 13 (5): 2227- 2240
doi: 10.1109/TII.2017.2695583
[5]   周策, 白斌, 叶楠 自适应粒子群优化支持向量回归的工程系统可靠性预测[J]. 机械工程学报, 2023, 59 (14): 328- 338
ZHOU Ce, BAI Bin, YE Nan Reliability prediction of engineering system based on adaptive particle swarm optimization support vector regression[J]. Journal of Mechanical Engineering, 2023, 59 (14): 328- 338
doi: 10.3901/JME.2023.14.328
[6]   HAN Y, TANG B, DENG L An enhanced convolutional neural network with enlarged receptive fields for fault diagnosis of planetary gearboxes[J]. Computers in Industry, 2019, 107: 50- 58
doi: 10.1016/j.compind.2019.01.012
[7]   AN Z, LI S, WANG J, et al A novel bearing intelligent fault diagnosis framework under time-varying working conditions using recurrent neural network[J]. ISA Transactions, 2020, 100: 155- 170
doi: 10.1016/j.isatra.2019.11.010
[8]   PEI X, ZHENG X, WU J Rotating machinery fault diagnosis through a transformer convolution network subjected to transfer learning[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 2515611
[9]   TZENG E, HOFFMAN J, ZHANG N, et al. Deep domain confusion: maximizing for domain invariance [EB/OL]. (2014–12–10)[2024–06–10]. https://arxiv.org/pdf/1412.3474.
[10]   SUN B, SAENKO K. Deep CORAL: correlation alignment for deep domain adaptation [C]// Computer Vision – ECCV 2016 Workshops. [S.l.]: Springer, 2016: 443–450.
[11]   GANIN Y, USTINOVA E, AJAKAN H, et al. Domain-adversarial training of neural networks [M]// CSURKA G. Domain adaptation in computer vision applications. [S.l.]: Springer, 2017: 189–209.
[12]   CHEN Z, HE G, LI J, et al Domain adversarial transfer network for cross-domain fault diagnosis of rotary machinery[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69 (11): 8702- 8712
doi: 10.1109/TIM.2020.2995441
[13]   LONG M, CAO Z, WANG J, et al. Conditional adversarial domain adaptation [C]// Proceedings of The 32nd International Conference on Neural Information Processing Systems. Montreal: [s.n.], 2018: 1647–1657.
[14]   JIAO J, LI H, ZHANG T, et al Source-free adaptation diagnosis for rotating machinery[J]. IEEE Transactions on Industrial Informatics, 2023, 19 (9): 9586- 9595
doi: 10.1109/TII.2022.3231414
[15]   LI Y, SONG Y, JIA L, et al Intelligent fault diagnosis by fusing domain adversarial training and maximum mean discrepancy via ensemble learning[J]. IEEE Transactions on Industrial Informatics, 2021, 17 (4): 2833- 2841
doi: 10.1109/TII.2020.3008010
[16]   ZHAO K, JIANG H, WANG K, et al Joint distribution adaptation network with adversarial learning for rolling bearing fault diagnosis[J]. Knowledge-Based Systems, 2021, 222: 106974
doi: 10.1016/j.knosys.2021.106974
[17]   RAS G, XIE N, VAN GERVEN M, et al Explainable deep learning: a field guide for the uninitiated[J]. Journal of Artificial Intelligence Research, 2022, 73: 329- 396
doi: 10.1613/jair.1.13200
[18]   LOCATELLO F, BAUER S, LUCIC M, et al. Challenging common assumptions in the unsupervised learning of disentangled representations [C]// International Conference on Learning Representations. Long Beach: [s.n.]. 2019, 97: 4114–4124.
[19]   KINGMA D P, WELLING M. Auto-encoding variational Bayes [EB/OL]. (2022–12–10)[2024–06–10]. https://arxiv.org/pdf/1312.6114v11.
[20]   HIGGINS I, MATTHEY L, PAL A, et al. β-VAE: learning basic visual concepts with a constrained variational framework [C]// International Conference on Learning Representations. Puerto Rico: [s.n.]. 2016: 1–13.
[21]   LI J, WU B, SUN X, et al. Causal hidden Markov model for time series disease forecasting [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 12100–12109.
[22]   LONG M, CAO Y, CAO Z, et al Transferable representation learning with deep adaptation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41 (12): 3071- 3085
doi: 10.1109/TPAMI.2018.2868685
[23]   PEARL J. Causality: models, reasoning and inference [M]. New York: Cambridge University Press, 2000: 1–478.
[24]   HOU B, YANG J, WANG P, et al LSTM-based auto-encoder model for ECG arrhythmias classification[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69 (4): 1232- 1240
doi: 10.1109/TIM.2019.2910342
[25]   ZHAO Z, ZHANG Q, YU X, et al Applications of unsupervised deep transfer learning to intelligent fault diagnosis: a survey and comparative study[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 3525828
[26]   SMITH W A, RANDALL R B Rolling element bearing diagnostics using the Case Western Reserve University data: a benchmark study[J]. Mechanical Systems and Signal Processing, 2015, 64: 100- 131
[27]   QIU H, LEE J, LIN J, et al Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics[J]. Journal of Sound and Vibration, 2006, 289 (4/5): 1066- 1090
[28]   RANDALL R B, ANTONI J Rolling element bearing diagnostics: a tutorial[J]. Mechanical Systems and Signal Processing, 2011, 25 (2): 485- 520
doi: 10.1016/j.ymssp.2010.07.017
[1] Changqing ZHOU,Yaochun HOU,Peng WU,Shuai YANG,Dazhuan WU. Adaptive sparse representation atom construction method for gearbox diagnosis[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(5): 1018-1030.
[2] Xianwei MA,Chaohui FAN,Weizhi NIE,Dong LI,Yiqun ZHU. Robust fault diagnosis method for failure sensors[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(7): 1488-1497.
[3] Kang HAN,Hongfei ZHAN,Junhe YU,Rui WANG. Rolling bearing fault diagnosis based on dilated convolution and enhanced multi-scale feature adaptive fusion[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(6): 1285-1295.
[4] Diao ZHOU,Xin XIONG,Jianhua ZHOU,Jing ZONG,Qi ZHANG. Convolutional neural network combined with subdomain adaptation for low sampling rate EMG-based gesture recognition[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(10): 2011-2019.
[5] Zhiqiang GENG,Wei CHEN,Bo MA,Yongming HAN. Bearing intelligent fault diagnosis method based on continuous wavelet convolutional neural network[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(10): 2069-2075.
[6] Lan WU,Quan-long CUI. Heterogeneous domain adaptation based on pseudo label refinement and semantic alignment[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(9): 1876-1884.
[7] Yu-xiang WANG,Zhi-wei ZHONG,Peng-cheng XIA,Yi-xiang HUANG,Cheng-liang LIU. Compound fault decoupling diagnosis method based on improved Transformer[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(5): 855-864.
[8] Kun LIU,Xiao-song YANG. Surface defect identification of cross scene strip based on unsupervised domain adaptation[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 477-485.
[9] Wei SUN,Heng LIU,Jian-feng TAO,Hao SUN,Cheng-liang LIU. IndRNN-1DLCNN based fault diagnosis of independent metering valve-controlled hydraulic cylinder system[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(10): 2028-2041.
[10] Lan WU,Han WANG,Bin-quan LI,Chong-yang LI,Fan-shi KONG. Multi-source unsupervised domain adaption method based on self-supervised task[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 754-763.
[11] Le XIE,Xi-dan HENG,Yang LIU,Qi-long JIANG,Dong LIU. Transformer fault diagnosis based on linear discriminant analysis and step-by-step machine learning[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2266-2272.
[12] Jing-jing LIN,Yan-xia SHEN. Stator current sensors’ fault tolerant control for permanent magnet synchronous motor drive system[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1815-1825.
[13] Zheng ZHANG,Xue-jun ZHOU,Xi-chen WANG,Yuan-yuan ZHOU. Short-circuit fault diagnosis and interval location method for constant current remote supply system in cabled underwater information networks[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1190-1197.
[14] TONG Shui-guang, ZHANG Yi-dong, XU Jian, CONG Fei-yun. Spectral band refined composite multiscale fuzzy entropy and its application in fault diagnosis of rolling bearings[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(8): 1509-1516.
[15] GE Yun-long, CHEN Zi-qiang, ZHENG Chang-wen. Time-varying parameters estimation and fault diagnosis of li-ion battery using UTSTF[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(6): 1223-1230.