Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (9): 1876-1884    DOI: 10.3785/j.issn.1008-973X.2023.09.019
    
Heterogeneous domain adaptation based on pseudo label refinement and semantic alignment
Lan WU(),Quan-long CUI
College of Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China
Download: HTML     PDF(848KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A new heterogeneous domain adaptive method was proposed for the existing methods ignoring the importance of semantic attributes in pseudo-labeling and category prediction, resulting in poor classification accuracy. The conditional and the marginal distributions of the source and the target domains were matched, and the similarity of the source and the target data in the common feature subspace was considered. The classification accuracy of a model was increased, enhancing the confidence of the pseudo-labels of the target domain pseudo-labels by refining the pseudo-labels of the spatial similarity. The domain discriminator in the semantic prediction space was constructed by the similar predictive distributions of the similar samples after the classifier output, and the generalization of the model was improved. Experimental results of the classification task for text and images with different feature representations successfully validate the superiority of the proposed method.



Key wordsheterogeneous domain adaptation      pseudo-label refinement      semantic prediction space      domain discriminator      semantic alignment     
Received: 24 November 2022      Published: 16 October 2023
CLC:  TP 391.41  
Fund:  国家自然科学基金资助项目(61973103);河南省优秀青年基金资助项目(222300420039);郑州市科技创新协同专项重点项目(21ZZXTCX01)
Cite this article:

Lan WU,Quan-long CUI. Heterogeneous domain adaptation based on pseudo label refinement and semantic alignment. Journal of ZheJiang University (Engineering Science), 2023, 57(9): 1876-1884.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.09.019     OR     https://www.zjujournals.com/eng/Y2023/V57/I9/1876


基于伪标签细化和语义对齐的异构域自适应

在进行跨域知识迁移时,现有异构域自适应方法忽略了伪标签和类别预测中语义属性的重要性,导致分类精度不高,为此提出新的异构域自适应方法. 该方法匹配源域和目标域的条件分布和边缘分布,考虑源数据和目标数据在公共特征子空间的相似性,通过细化空间相似性的伪标签来增强目标域伪标签的置信度,使模型的分类精度提高. 考虑同类的样本经过分类器输出后有相似的预测分布,构造语义预测空间中的域鉴别器,使模型的泛化性提升. 不同特征表示的文本和图像的分类任务实验结果成功地验证了所提方法的优越性.


关键词: 异构域自适应,  伪标签细化,  语义预测空间,  域鉴别器,  语义对齐 
Fig.1 Network structure diagram of heterogeneous domain adaptive
Fig.2 Allocation schematic of pseudo label
方法 Acc% 方法 Acc%
NNt 67.68 LG 77.54
CDLS 70.96 SDA-PPLS 76.22
STN 78.46 本研究 80.54
SSAN 80.22
Tab.1 Classification results of different methods for text-to-image heterogeneous migration on ImageNet+NUS-WIDE dataset
方法 ${{\rm{Acc}}_ {{\rm{SD}}}} $/% ${{{\rm{Acc}}}_ {{\rm{DS}}}} $/%
A→A C→C W→W 平均值 A→A C→C W→W 平均值
SVMt 88.66 77.31 89.32 85.10 43.03 30.15 55.28 42.82
NNt 90.00 79.56 91.42 86.99 42.82 31.33 60.87 45.01
MMDT 89.30 80.30 87.30 85.63 40.50 30.60 59.10 43.40
G-JDA 92.30 86.70 89.40 89.47 50.30 33.70 63.80 49.27
CDLS 91.70 81.80 95.20 89.57 46.40 31.80 63.10 47.10
STN 92.19 82.92 95.43 90.18 47.62 30.83 64.71 47.72
SSAN 92.45 87.01 96.66 92.04 52.91 37.24 69.81 53.32
LG 92.36 84.15 96.04 90.85 44.70 31.20 63.10 46.33
SDA-PPLS 92.85 87.34 96.31 92.17 54.88 33.18 71.72 53.26
本研究 93.70 89.03 97.29 93.34 54.40 39.09 72.83 55.44
Tab.2 Classification results of different methods for same domain cross-feature migration on Office+Caltech-256 dataset
方法 Acc%
A→C A→W A→D C→A C→D C→W W→A W→C W→D 平均值
SVMt 79.64 89.34 92.60 89.13 92.60 89.34 89.13 79.64 92.60 87.68
NNt 81.03 91.13 92.99 89.60 92.99 91.13 89.60 81.03 92.99 88.69
MMDT 75.62 89.28 91.65 87.06 91.46 89.11 87.00 75.44 91.77 86.49
CDLS 78.73 91.57 94.45 86.34 90.43 88.60 87.51 77.30 92.72 87.52
SGW 79.88 90.26 93.43 89.03 93.43 90.26 89.02 79.85 93.43 88.73
G-JDA 86.60 94.09 90.67 92.49 88.62 92.64 92.28 84.82 95.87 90.90
TNT 85.79 91.26 92.04 92.35 92.67 92.98 92.99 86.28 94.09 91.17
STN 88.21 96.68 96.42 93.03 96.06 96.38 93.11 87.22 96.38 93.72
SSAN 88.30 96.31 97.00 93.16 97.44 95.87 93.54 88.18 97.64 94.17
SDA-PPLS 86.29 95.42 95.68 92.16 95.42 95.62 91.15 85.40 97.24 92.71
本研究 89.07 97.17 98.03 93.49 98.27 96.67 93.95 89.56 98.58 94.98
Tab.3 Classification results of different methods for heterogeneous domain cross-feature migration on Office+Caltech-256 dataset (SURF→DeCAF6)
方法 Acc%
A→C A→W A→D C→A C→D C→W W→A W→C W→D 平均值
SVMt 19.99 78.60 84.37 34.26 84.37 78.60 34.26 19.99 84.37 57.65
NNt 20.22 81.51 84.25 34.81 84.25 81.51 34.81 20.22 84.25 58.43
CDLS 21.32 80.38 85.03 34.69 86.61 78.11 35.66 20.31 82.68 58.31
STN 21.64 83.77 85.20 34.16 86.59 84.21 35.18 20.71 83.74 59.47
SSAN 24.07 88.47 91.81 41.71 91.22 86.24 37.36 23.50 93.62 64.22
本研究 27.93 90.68 94.63 42.79 94.51 90.16 39.68 27.00 94.88 66.92
Tab.4 Classification results of different methods for heterogeneous domain cross-feature migration on Office+Caltech-256 dataset (SURF→ResNet50)
方法 Acc%
E→S F→S G→S I→S 平均值
SVMt 67.70 67.70 67.70 67.70 67.70
NNt 68.20 68.20 68.20 68.20 68.00
NNst 67.72 67.23 67.53 67.76 67.56
MMDT 68.21 65.66 67.24 67.13 67.06
SHFA 70.33 70.32 70.33 70.33 70.33
G-JDA 68.53 69.51 69.62 69.63 69.32
CDLS 68.36 68.54 68.61 68.50 68.50
DDASL 70.15 70.92 70.23 70.50 70.45
STN 73.82 74.55 73.71 74.22 74.08
SSAN 76.16 76.61 76.72 77.16 76.66
LG 73.21 71.94 72.53 66.98 71.17
SDA-PPLS 75.55 74.38 74.33 75.71 74.99
本研究 77.04 77.74 78.18 78.05 77.75
Tab.5 Classification results of different methods for text-to-text heterogeneous migration on Multilingual Reuters Collection dataset
方法 Acc%
A→D C→W W→A
PLR-SAs 95.28 95.28 92.96
PLR-SA(β=0) 94.49 92.83 89.01
PLR-SAst 95.16 94.91 92.35
PLR-SA(γ=0) 94.88 95.85 92.56
PLR-SA(q=Q) 97.71 96.11 93.24
PLR-SA 98.03 96.67 93.95
Tab.6 Ablation experiment of proposed method on Office+Caltech-256 dataset
Fig.3 Results of parameter sensitivity analysis of proposed method on different migration tasks
[1]   沈宗礼, 余建波 基于迁移学习与深度森林的晶圆图缺陷识别[J]. 浙江大学学报: 工学版, 2020, 54 (6): 1228- 1239
SHEN Zong-li, YU Jian-bo Wafer map defect recognition based on transfer learning and deep forest[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (6): 1228- 1239
[2]   DAY O, KHOSHGOFTAAR T M A survey on heterogeneous transfer learning[J]. Journal of Big Data, 2017, 4: 29
doi: 10.1186/s40537-017-0089-0
[3]   LUO Y, WEN Y, TAO D Heterogeneous multitask metric learning across multiple domains[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29 (9): 4051- 4064
doi: 10.1109/TNNLS.2017.2750321
[4]   REN C X, FENG J, DAI D Q, et al Heterogeneous domain adaptation via covariance structured feature translators[J]. IEEE Transactions on Cybernetics, 2021, 51 (4): 2166- 2177
doi: 10.1109/TCYB.2019.2957033
[5]   LI H, PAN S J, WAN R, et al. Heterogeneous transfer learning via deep matrix completion with adversarial kernel embedding [C]// Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-First Innovative Applications of Artificial Intelligence Conference and Ninth AAAI Symposium on Educational Advances in Artificial Intelligence. [S.l.]: AAAI Press, 2019: 8602-8609.
[6]   TSAI Y H H, YEH Y R, WANG Y C F. Learning cross-domain landmarks for heterogeneous domain adaptation [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 5081-5090.
[7]   HSIEH Y T, TAO S Y, TSAI Y H H, et al. Recognizing heterogeneous cross-domain data via generalized joint distribution adaptation [C]// 2016 IEEE International Conference on Multimedia and Expo. Seattle: IEEE, 2016: 1-6.
[8]   YAO Y, ZHANG Y, LI X, et al. Heterogeneous domain adaptation via soft transfer network [C]// Proceedings of the 27th ACM International Conference on Multimedia. [S.l.]: ACM, 2019: 1578-1586.
[9]   WANG C, MAHADEVAN S. Heterogeneous domain adaptation using manifold alignment [C]// Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence. [S.l.]: AAAI Press, 2011: 1541-1546.
[10]   DUAN L, XU D, TSANG I W. Learning with augmented features for heterogeneous domain adaptation [C]// Proceedings of the 29th International Conference on International Conference on Machine Learning. [S.l.]: Omnipress, 2012: 667-674.
[11]   LI W, DUAN L, XU D, et al Learning with augmented features for supervised and semi-supervised heterogeneous domain adaptation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36 (6): 1134- 1148
doi: 10.1109/TPAMI.2013.167
[12]   HOFFMAN J, RODNER E, DONAHUE J, et al. Efficient learning of domain-invariant image representations[EB/OL]. [2022-10-02]. https://arxiv.org/pdf/1301.3224.pdf.
[13]   ZHOU J T, TSANG I W, PAN S J, et al. Heterogeneous domain adaptation for multiple classes [C]// Proceedings of the 17th International Conference on Artificial Intelligence and Statistics. Reykjavik: [s.n.], 2014: 1095-1103.
[14]   YAN Y, LI W, WU H, et al. Semi-supervised optimal transport for heterogeneous domain adaptation [C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence. [S.l.]: AAAI Press, 2018: 2969-2975.
[15]   CHEN W Y, HSU T M H, TSAI Y H H, et al. Transfer neural trees for heterogeneous domain adaptation [C]// European Conference on Computer Vision. [S.l.]: Springer, 2016: 399-414.
[16]   LI S, XIE B, WU J, et al. Simultaneous semantic alignment network for heterogeneous domain adaptation [C]// Proceedings of the 28th ACM International Conference on Multimedia. [S.l.]: ACM, 2020: 3866-3874.
[17]   ZHOU Z, WANG Y, NIU C, et al Label-guided heterogeneous domain adaptation[J]. Multimedia Tools and Applications, 2022, 81: 20105- 20126
doi: 10.1007/s11042-022-12483-1
[18]   ALIPOUR N, TAHMORESNEZHAD J Heterogeneous domain adaptation with statistical distribution alignment and progressive pseudo label selection[J]. Applied Intelligence, 2022, 52: 8038- 8055
doi: 10.1007/s10489-021-02756-x
[1] Yan ZHANG,Jing-xue SUN,Ye-mei SUN,Shu-dong LIU,Chuan-qi WANG. Lightweight object detection based on split attention and linear transformation[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(6): 1195-1204.
[2] Tian-le YUAN,Ju-long YUAN,Yong-jian ZHU,Han-chen ZHENG. Surface defect detection algorithm of thrust ball bearing based on improved YOLOv5[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(12): 2349-2357.
[3] Nan-jing YU,Xiao-biao FAN,Tian-min DENG,Guo-tao MAO. Ship detection algorithm in complex backgrounds via multi-head self-attention[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(12): 2392-2402.
[4] Zhu-ye XU,Xiao-qiang ZHAO,Hong-mei JIANG. 3D model fitting method based on point distribution model[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(12): 2373-2381.
[5] Yi-xiong FENG,Kang-jie LI,Yi-cong GAO,Hao ZHENG. Corner recognition of industrial robot contour curve for visual servoing[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1449-1456.
[6] Zong-li SHEN,Jian-bo YU. Wafer map defect recognition based on transfer learning and deep forest[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1228-1239.
[7] TANG You bao, BU Wei, WU Xiang qian. Natural scene text detection based on multi level MSER[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(6): 1134-1140.
[8] WU Yi,YIN Jun, ZHU Li, YUAN Yong ming. Two dimensional Arimoto gray entropy image thresholding based on bee colony optimization or decomposition[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(9): 1625-1633.
[9] WANG Yuan-yuan, GUO Yan-en, SHI Guo-quan, WEI Jun-xia, XIA Shun-ren. Algorithm for seabed terrain boundary extraction based on acoustic images[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(2): 376-383.
[10] HU Zhu-hua, ZHAO Yao-chi, CHENG Jie-ren, PENG Jin-lian. Moving object segmentation method based on improved DRLSE[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(8): 1488-1495.
[11] YANH Yu-ting, SHI Yu-hui, XIA Shun-ren. Discussion mechanism based brain storm optimization algorithm[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(10): 1705-1711.
[12] ZHU Xiao-en, HAO Xin, XIA Shun-ren. Feature selection algorithm based on Levy flight[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(4): 638-643.
[13] ZHOU Shui-qin, YING Yi-bin, SHANG De-sheng. Morphology based noninvasive detection for fragrant pears browning
with magnetic resonance imaging
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(12): 2141-2145.
[14] SON Chang-il , ZHEN Shuai, XIA Shun-ren. Attractor range based affine registration of multi-modal
brain magnetic resonance images
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(9): 1722-1728.
[15] XIE Di, TONG Ruo-feng, TANG Min, FENG Yang. Distinguishable method for video fire detection[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(4): 698-704.