Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (4): 730-740    DOI: 10.3785/j.issn.1008-973X.2025.04.008
    
Numerical parametric study of percolation through capillary barrier cover with zipper-shape interface
Yahua ZHENG1(),Hongwei LIU2,Song FENG1,*()
1. College of Civil Engineering, Fuzhou University, Fuzhou 350108, China
2. Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350108, China
Download: HTML     PDF(1880KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A novel capillary barrier cover was proposed, which added multiple gravel segments to the traditional cover with capillary barrier effects (CCBE) to form a zipper-shape CCBE between fine-grained and coarse-grained soils. The zipper-shape interface along the slope was designed to help the formation of several diversion lengths while controlling water percolation location. The drainage ditch arranged below the gravel segment was effectively used to reduce the water percolation into the buried wastes underneath the cover. Considering the gravel segment sizes, the thickness of fine-grained soils, the slope of CCBE, rainfall pattern, and extreme and prolonged rainfall, the hydraulic performance of the proposed zippered CCBE with the traditional one was compared. Results showed that the water percolation of zippered CCBE was 17%-25% lower than the traditional one. In both extreme and prolonged rainfall conditions, the percolation of the zippered CCBE was lower than the international annual percolation standard. Increased percolation of the zippered CCBE was observed when the gravel segment height exceeded 0.2 m or the gravel segment width and spacing augmented, and water percolation gradually decreased with the increase of the thickness of fine-grained soils and the slope of landfill cover. Among the two types of CCBE, percolation varies under different rainfall patterns, ranked from highest to lowest: the advanced rainfall pattern, the uniform pattern, the central pattern, and the delayed pattern. Compared to the traditional CCBE, the zippered one is less affected by the rainfall pattern in terms of water percolation.



Key wordszippered cover      water movement      capillary barrier      percolation      finite element     
Received: 25 January 2024      Published: 25 April 2025
CLC:  TU 43  
Fund:  国家自然科学基金资助项目(52178320, 42177120);国家重点研发计划资助项目(2019YFC1806003).
Corresponding Authors: Song FENG     E-mail: 201982010019@sdust.edu.cn;sfengaa@connect.ust.hk
Cite this article:

Yahua ZHENG,Hongwei LIU,Song FENG. Numerical parametric study of percolation through capillary barrier cover with zipper-shape interface. Journal of ZheJiang University (Engineering Science), 2025, 59(4): 730-740.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.04.008     OR     https://www.zjujournals.com/eng/Y2025/V59/I4/730


锯齿状毛细阻滞覆盖层渗漏量的参数研究

在传统毛细阻滞覆盖层的粗-细粒土界面处添加多个方形碎石垄,形成锯齿状的毛细阻滞覆盖层. 锯齿状毛细阻滞界面有利于在顺坡方向形成多个导排长度,主动控制底部渗漏位置. 在碎石垄下方设置的导排盲沟收集部分渗漏雨水,降低进入固废堆体的渗漏量. 考虑碎石垄尺寸、细粒土层厚度、覆盖层坡度、雨型、极端降雨和长时间降雨等参数,对比锯齿状毛细阻滞覆盖层与传统毛细阻滞覆盖层的性能. 结果表明,锯齿状毛细阻滞覆盖层的渗漏量比传统毛细阻滞覆盖层的低17%~25%;无论是在极端降雨情况下,还是在长时间降雨情况下,锯齿状毛细阻滞覆盖层的渗漏量均小于国际年渗漏量标准. 碎石垄高度超过0.2 m或碎石垄边长和间距增加会导致锯齿状毛细阻滞覆盖层的渗漏量增加,底部渗漏量随覆盖层坡度和细粒土层厚度的提高逐渐减小. 2种覆盖层在不同降雨模式下的渗漏量由大到小依次为超前型降雨、等强型、中心型模式、滞后型, 锯齿状毛细阻滞覆盖层的渗漏量受雨型的影响较传统毛细阻滞覆盖层的小.


关键词: 锯齿状覆盖层,  水分运移,  毛细阻滞,  渗漏,  有限元 
Fig.1 Soil water characteristic curve and hydraulic conductivity curve for numerical model of traditional cover with capillary barrier effects
Fig.2 2D numerical model and finite-element mesh of traditional cover with capillary barrier effects
Fig.3 Measured and numerically calculated results for different parameters of traditional cover with capillary barrier effects
Fig.4 Schematic diagram of water transport in zippered cover with capillary barrier effects
Fig.5 2D numerical model of zippered cover with capillary barrier effects
Fig.6 Soil water characteristic curve and hydraulic conductivity curve for numerical model of zippered cover with capillary barrier effects
工况β/(°)Δ/mYR/(mm·d?1)h/mb/ma /mnt/d
A1180.9等强型300~6
B1180.9等强型300.1~0.50.54.640~6
B20.20.3~1.84.64
B30.20.53.6~5.44~6
C1180.7~1.2等强型300.180.33.660~6
C2
D113~230.9等强型300.180.33.660~6
D2
E1180.7等强型26.20.180.33.660~5
E2超前型8.73~52.40~2,3~5
E3中心型8.73~52.40~2,3~4,5
E4滞后型8.73~52.40~3,4~5
F1180.9等强型2500.180.33.661
F2
Tab.1 Numerical simulation scheme for cover with capillary barrier effects
Fig.7 Impact of gravel segment height on percolation and drainage
Fig.8 Pore-water pressure contour and water flow velocity
Fig.9 Impact of gravel segment spacing on percolation and drainage
Fig.10 Impact of gravel segment width on percolation and drainage
Fig.11 Variation of percolation ratio to total drainage ratio with gravel segment height, width and spacing
水平h/mb/ma/m
10.180.35.4
20.300.64.2
30.601.03.6
Tab.2 Standard orthogonal array of gravel segment
因素h/mb/ma/mPe/m
10.180.35.48.58
20.180.64.28.99
30.181.03.610.03
40.300.33.68.80
50.300.65.49.89
60.301.04.211.48
70.600.34.29.32
80.600.63.610.63
90.601.05.413.56
k19.28.910.68
k210.059.839.93
k311.1711.699.82
Ri1.972.790.86
最优方案0.180.33.6
Tab.3 Simulation results of orthogonal experiment
Fig.12 Water distribution in different covers under extreme and prolonged rainfall conditions
Fig.13 Impact of fine-grained soils thickness on percolation and drainage
Fig.14 Impact of slope on percolation and drainage
Fig.15 Impact of rain patterns on percolation and drainage
[1]   詹良通, 冯嵩, 李光耀, 等 生态型土质覆盖层工作原理及其在垃圾填埋场封场治理中的应用[J]. 环境卫生工程, 2022, 30 (4): 1- 20
ZHAN Liangtong, FENG Song, LI Guangyao, et al Working principle of ecological soil covers and its application in landfill sealing treatment[J]. Environmental Sanitation Engineering, 2022, 30 (4): 1- 20
[2]   王亮, 谢海建, 吴家葳, 等 填埋场成层衬垫污染物运移参数等效模型[J]. 浙江大学学报: 工学版, 2021, 55 (3): 519- 529
WANG Liang, XIE Haijian, WU Jiawei, et al Equivalent model for pollutant transport parameters of layered landfill liners[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (3): 519- 529
[3]   CUARTAS M, LÓPEZ A, PÉREZ F, et al Analysis of landfill design variables based on scientific computing[J]. Waste Management, 2018, 71: 287- 300
doi: 10.1016/j.wasman.2017.10.043
[4]   焦卫国, 詹良通, 季永新, 等 含非饱和导排层的毛细阻滞覆盖层长期性能分析[J]. 浙江大学学报: 工学版, 2019, 53 (6): 1101- 1109
JIAO Weiguo, ZHAN Liangtong, JI Yongxin, et al Analysis on long-term performance of capillary-barrier cover with unsaturated drainage layer[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (6): 1101- 1109
[5]   焦卫国, 詹良通, 兰吉武, 等 黄土-碎石覆盖层毛细阻滞效应及设计厚度分析[J]. 浙江大学学报: 工学版, 2016, 50 (11): 2128- 2134
JIAO Weiguo, ZHAN Liangtong, LAN Jiwu, et al Analysis of capillary barrier effect and design thickness with loess-gravel cover[J]. Journal of Zhejiang University: Engineering Science, 2016, 50 (11): 2128- 2134
[6]   LACROIX VACHON B, ABDOLAHZADEH A M, CABRAL A R Predicting the diversion length of capillary barriers using steady state and transient state numerical modeling: case study of the Saint-Tite-des-Caps landfill final cover[J]. Canadian Geotechnical Journal, 2015, 52 (12): 2141- 2148
doi: 10.1139/cgj-2014-0353
[7]   STORMONT J C, MORRIS C E Unsaturated drainage layers for diversion of infiltrating water[J]. Journal of Irrigation and Drainage Engineering, 1997, 123 (5): 364- 366
doi: 10.1061/(ASCE)0733-9437(1997)123:5(364)
[8]   李光耀, 刘思达, 李鹤, 等 增强型集气覆盖层闭气能力影响因素及优化布置[J]. 浙江大学学报: 工学版, 2024, 58 (1): 121- 129
LI Guangyao, LIU Sida, LI He, et al Factors affecting gas closure capacity of enhanced gas collection cover and optimized arrangement[J]. Journal of Zhejiang University: Engineering Science, 2024, 58 (1): 121- 129
[9]   NG C W W, GUO H W, XUE Q A novel environmentally friendly vegetated three-layer landfill cover system using construction wastes but without a geomembrane[J]. Indian Geotechnical Journal, 2021, 51 (3): 460- 466
doi: 10.1007/s40098-021-00542-7
[10]   詹良通, 贾官伟, 邓林恒, 等 湿润气候区固废堆场封场土质覆盖层性状研究[J]. 岩土工程学报, 2012, 34 (10): 1812- 1818
ZHAN Liangtong, JIA Guanwei, DENG Linheng, et al Performance of earthen final covers of landfills in humid areas[J]. Chinese Journal of Geotechnical Engineering, 2012, 34 (10): 1812- 1818
[11]   焦卫国, 庹斌, 张松, 等 西北非湿润区毛细阻滞覆盖层防渗性能验证与长期服役高危易渗气象段分析[J]. 岩土力学, 2023, 44 (Suppl.1): 539- 547
JIAO Weiguo, TUO Bin, ZHANG Song, et al Anti-seepage performance verification and analysis of high-risk permeable meteorological period of capillary barrier cover in Northwest non humid area[J]. Rock and Soil Mechanics, 2023, 44 (Suppl.1): 539- 547
[12]   邓林恒, 詹良通, 陈云敏, 等 含非饱和导排层的毛细阻滞型覆盖层性能模型试验研究[J]. 岩土工程学报, 2012, 34 (1): 75- 80
DENG Linheng, ZHAN Liangtong, CHEN Yunmin, et al Model tests on capillary-barrier cover with unsaturated drainage layer[J]. Chinese Journal of Geotechnical Engineering, 2012, 34 (1): 75- 80
[13]   陈冠一, 肖杰, 陈强, 等 不同毛细阻滞覆盖层处治膨胀土边坡的渗流及稳定性研究[J]. 中南大学学报: 自然科学版, 2022, 53 (1): 199- 213
CHEN Guanyi, XIAO Jie, CHEN Qiang, et al Study on seepage and stability of expansive soil slope treated by different capillary barrier cover layers[J]. Journal of Central South University: Science and Technology, 2022, 53 (1): 199- 213
[14]   张文杰, 耿潇 垃圾填埋场毛细阻滞型腾发封顶工作机理及性能分析[J]. 岩土工程学报, 2016, 38 (3): 454- 459
ZHANG Wenjie, GENG Xiao Performance and mechanism of capillary-barrier evaportranspiration cover of landfills[J]. Chinese Journal of Geotechnical Engineering, 2016, 38 (3): 454- 459
doi: 10.11779/CJGE201603008
[15]   刘川顺, 赵慧, 罗继武 垃圾填埋腾发覆盖系统渗沥控制试验和数值模拟[J]. 环境科学, 2009, 30 (1): 289- 296
LIU Chuanshun, ZHAO Hui, LUO Jiwu Experiment and numerical simulation of percolation control using evapotranspirative landfill cover system[J]. Environmental Science, 2009, 30 (1): 289- 296
doi: 10.3321/j.issn:0250-3301.2009.01.048
[16]   ROSS B The diversion capacity of capillary barriers[J]. Water Resources Research, 1990, 26 (10): 2625- 2629
doi: 10.1029/WR026i010p02625
[17]   冯嵩, 王冲, 刘毓氚, 等. 一种促进截流排水与填埋气均匀分布的毛细阻滞型覆盖层结构: 202210767892.2 [P]. 2022−06−30.
[18]   BUSSIÈRE B, AUBERTIN M, CHAPUIS R P The behavior of inclined covers used as oxygen barriers[J]. Canadian Geotechnical Journal, 2003, 40 (3): 512- 535
doi: 10.1139/t03-001
[19]   COMSOL. COMSOL multiphysics reference manual (Version 5.2) [EB/OL]. (2015−11−16)[2023−10−01]. https://www.comsol.com/documentation.
[20]   焦卫国. 西北黄土/碎石覆盖层水分存储-释放机理及防渗设计方法[D]. 杭州: 浙江大学, 2015: 1–258.
JIAO Weiguo. Water storage and release of loess/gravel cover and seepage prevention design method in northwest of China [D]. Hangzhou: Zhejiang University, 2015: 1–258.
[21]   贾官伟. 固废堆场终场土质覆盖层中水分运移规律及调控方法研究[D]. 杭州: 浙江大学, 2010: 1–198.
JIA Guanwei. Study on the water transport in the landfill earthen final cover and its controlling method [D]. Hangzhou: Zhejiang University, 2010: 1–198.
[22]   中华人民共和国住房和城乡建设部. 生活垃圾卫生填埋处理技术规范: GB50869—2013 [S]. 北京: 中国计划出版社, 2013.
[23]   STEENHUIS T S, PARLANGE J Y, KUNG K S Comment on “the diversion capacity of capillary barriers” by benjamin ross[J]. Water Resources Research, 1991, 27 (8): 2155- 2156
doi: 10.1029/91WR01366
[24]   郭轩, 徐忠根, 赵亚涛, 等 CFRP-木结构波纹钢填板螺栓节点力学性能正交试验研究[J]. 浙江大学学报: 工学版, 2024, 58 (4): 847- 856
GUO Xuan, XU Zhonggen, ZHAO Yatao, et al Orthogonal experimental study on mechanical properties of CFRP-bolted timber joints with slotted-in corrugated steel plates[J]. Journal of Zhejiang University: Engineering Science, 2024, 58 (4): 847- 856
[25]   杨虎, 刘琼荪, 钟波. 数理统计[M]. 北京: 高等教育出版社, 2004: 168–170.
[26]   MORRIS C E, STORMONT J C Parametric study of unsaturated drainage layers in a capillary barrier[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125 (12): 1057- 1065
doi: 10.1061/(ASCE)1090-0241(1999)125:12(1057)
[27]   黄安平. 高填方边坡稳定性影响因素敏感性分析[D]. 兰州: 兰州理工大学, 2020: 1–71.
HUANG Anping. Sensitivity analysis of factors affecting the stability of high fill slope [D]. Lanzhou: Lanzhou University of Technology, 2020: 1–71.
[28]   李晓康, 李旭, 王菲, 等. 毛细阻滞覆盖层储水能力和击穿时间试验研究[J]. 岩石力学与工程学报, 2022, 41(1): 1501–1511.
LI Xiaokang, LI Xu, WANG Fei, et al. Experimental study on water storage capacity and breakthrough time of capillary barrier cover [J]. Chinese Journal of Rock Mechanics and Engineering , 2022, 41(7): 1501–1511.
[29]   AUBERTIN M, CIFUENTES E, APITHY S A, et al Analyses of water diversion along inclined covers with capillary barrier effects[J]. Canadian Geotechnical Journal, 2009, 46 (10): 1146- 1164
doi: 10.1139/T09-050
[30]   李宁, 潘行, 张茂建, 等 降雨形式对毛细阻滞覆盖层防渗性能的影响研究[J]. 岩土力学, 2022, 43 (6): 1546- 1556
LI Ning, PAN Hang, ZHANG Maojian, et al Influence of rainfall patterns on anti-seepage performance of capillary barrier covers[J]. Rock and Soil Mechanics, 2022, 43 (6): 1546- 1556
[1] Guohua XING,Yongjian LU,Pengyong MIAO,Sijin CHEN. Optimal design method of temporary broadcasting tower structure based on improved genetic algorithm[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(3): 469-479.
[2] Yang WU,Lei XIAO,Weiyan WANG,Jinxin XU,Yuan DU,Boxin YANG,Qi AN. Finite element calculation method of contact stress between elevator safety gear brake block and guide rail[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(1): 109-119.
[3] Xingbiao ZHANG,Tao WANG,Sen YAO,Huawen YE,Lu WANG,Lunhua BAI. Dynamic response of cable fracture of long span road-rail cable-stayed suspension bridge[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(9): 1874-1885.
[4] Yifei LUO,Bin HU,Xin ZHAO,Zefeng WEN. Rolling contact and wear characteristics simulation analysis of scaled wheel-ring rail[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(6): 1275-1284.
[5] Mi ZHOU,Zhao FENG,Pengli ZHANG,Wei QIN. Shaking table model test of cable-stayed bridge with large flow water pressure pipeline[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(10): 2149-2161.
[6] Jun-chao JIN,Lai-hong JING,Feng-wei YANG,Zhi-yu SONG,Peng-yang SHANG. Improvement of multi-step brittle-plastic approach[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(9): 1706-1717.
[7] Ling-mao WANG,Wei-jian ZHAO. Simulation on pullout behavior of mechanical anchorage reinforcing bars based on refined rib-scale modeling[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(8): 1573-1584.
[8] Xiao-dan CHEN,Ao WU,Rui-jie ZHAO,En-xiang XU. Rotor dynamics of impeller in a magnetic suspension bearingless centrifugal pump[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(8): 1680-1688.
[9] Guo-qing XIE,Mi WANG,De-wen KONG. Seismic performance of steel frame with new high strength silicate wallboard[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(7): 1402-1409.
[10] Jia-wen BAO,Qiang GAO,Lin TANG,Wei-jian ZHAO. Refined finite element analysis of tensile property of grout sleeve splicing of rebars[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(4): 814-823.
[11] Ting-guo CHEN,Zhao-di GUO. Stability of axial compression bars with inter-bar torsional constraints[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 598-605.
[12] Xiang YU,Yuan-ping LAI,Yu-ke WANG,Yong-qian QU,Hao-ran ZHENG. Identification method of cross-scale mesh and application in analysis of cutoff wall[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(10): 2116-2125.
[13] Jian LI,Chu-yan DAI,Yang-wei WANG,Yan-ling GUO,Fu-sheng ZHA. Design and optimization of single-finger soft grasp based on strawberry curve[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1088-1096, 1134.
[14] Cai-xia LIU,Ting-ting PAN,Yi-fan SUN,Shuai LI,Ping LIU,Ying HUANG. Segmented pneumatic soft actuator for rehabilitation training[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1127-1134.
[15] Mei-jiang GUI,Xiao-hu ZHOU,Xiao-liang XIE,Shi-qi LIU,Hao LI,Jin-li WANG,Zeng-guang HOU. Analysis and simulation of magnetic field for robot tactile perception[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1144-1151.