|
|
Pollutant diffusion law during high-altitude tunnel construction |
Xingyu CHEN1(),Jian WU2,Song REN1,*(),Ping ZHANG1,Chao DENG1,Lingwei KONG3 |
1. State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China 2. China Railway Southwest Research Institute Limited Company, Chengdu 611731, China 3. Zhaotong Zhaolu Expressway Investment and Development Limited Company, Zhaotong 657000, China |
|
|
Abstract Numerical simulation and on-site testing methods were used to analyze the diffusion law of dust and CO during the ventilation process of high-altitude tunnel construction by relying on the Mangkang Mountain Tunnel Project of the Sichuan Tibet Railway in order to analyze the diffusion law of pollutants during the ventilation process of high-altitude tunnel construction. Results show that dust mainly diffuses towards the outside of the tunnel in the form of wall-adhering flow, and it accumulates into ‘dust clusters’ during this process. Dust diffusion is mainly influenced by gravity and causes sedimentation. Excessive wind speed in the tunnel is not conducive to reducing dust mass concentration. CO migrates in the form of ‘air masses’ from the vicinity of the palm face to the entrance of the cave. The volume of CO air masses gradually expands during the migration process, and the mass concentration peak continuously decreases, gradually forming a ‘U-shaped’ distribution trend. The on-site test results of CO mass concentration basically accorded with the numerical simulation results. The CO mass concentration in the tunnel will increase as the altitude increases, and the time it takes for the CO mass concentration at the same location in the tunnel to meet the standard requirements will increase. A formula for calculating the correction coefficient of CO mass concentration during tunnel ventilation was derived based on altitude, which is a good supplement to the altitude correction coefficient of CO in the current specifications.
|
Received: 29 March 2023
Published: 07 November 2023
|
|
Fund: 国家自然科学基金资助项目(52074048) |
Corresponding Authors:
Song REN
E-mail: CXY0018@cqu.edu.cn;rs_rwx@163.com
|
高海拔隧道施工期污染物扩散规律
为了探究高海拔隧道施工通风过程中的污染物扩散规律,依托川藏铁路芒康山隧道工程,采用数值模拟和现场测试的方法,研究高海拔隧道施工通风过程中粉尘和CO的扩散规律. 研究结果表明,粉尘主要是以贴壁流动的形式向洞外扩散,在该过程中会聚集成为“粉尘团”. 粉尘扩散主要是受到重力影响发生沉降,隧道内风速过大,不利于降低粉尘质量浓度. CO以“气团”的形式从掌子面附近向洞口迁移,在迁移过程中CO气团体积逐渐扩大,质量浓度峰值不断下降,逐渐形成“U形”的分布趋势,CO质量浓度的现场测试结果与数值模拟结果基本吻合. 随着海拔高度的上升,隧道内的CO质量浓度会增大,隧道内同一位置CO质量浓度达到规范要求的时间会增加. 推导基于海拔高度的隧道通风过程中CO质量浓度修正系数计算公式,对当前规范中CO的海拔高度修正系数进行很好的补充.
关键词:
高海拔隧道,
通风,
污染物扩散,
现场测试,
修正系数
|
|
[1] |
赵勇, 石少帅, 田四明, 等 川藏铁路雅安至林芝段隧道建造面临的主要工程技术难题与对策建议[J]. 隧道建设(中英文), 2021, 41 (7): 1079- 1090 ZHAO Yong, SHI Shaoshuai, TIAN Siming, et al Technical difficulties and countermeasure suggestions in tunnel construction of Ya'an-Linzhi Section of Sichuan-Tibet Railway[J]. Tunnel Construction, 2021, 41 (7): 1079- 1090
|
|
|
[2] |
SASMITO A P, BIRGERSSON E, LY H C, et al Some approaches to improve ventilation system in underground coal mines environment: a computational fluid dynamic study[J]. Tunnelling and Underground Space Technology, 2013, 34: 82- 95
doi: 10.1016/j.tust.2012.09.006
|
|
|
[3] |
GOSTEEV Y A, FEDOROV A V Calculation of dust lifting by a transient shock wave[J]. Combustion, Explosion and Shock Waves, 2002, 38 (3): 322- 326
doi: 10.1023/A:1015657904264
|
|
|
[4] |
KHMEL T, FEDOROV A Numerical simulation of dust dispersion using molecular-kinetic model for description of particle-to-particle collisions[J]. Journal of Loss Prevention in the Process Industries, 2015, 36: 223- 229
doi: 10.1016/j.jlp.2015.02.006
|
|
|
[5] |
TORAÑO J, TORNO S, MENÉNDEZ M, et al Auxiliary ventilation in mining roadways driven with roadheaders: Validated CFD modelling of dust behaviour[J]. Tunnelling and Underground Space Technology, 2011, 26 (1): 201- 210
doi: 10.1016/j.tust.2010.07.005
|
|
|
[6] |
HU S Y, LIAO Q, FENG G R, et al Influences of ventilation velocity on dust dispersion in coal roadways[J]. Powder Technology, 2020, 360: 683- 694
doi: 10.1016/j.powtec.2019.09.080
|
|
|
[7] |
GENG F, LUO G, ZHOU F B, et al Numerical investigation of dust dispersion in a coal roadway with hybrid ventilation system[J]. Powder Technology, 2017, 313: 260- 271
doi: 10.1016/j.powtec.2017.03.021
|
|
|
[8] |
ZHAO Y, AMBROSE R P K Modeling dust dispersion and suspension pattern under turbulence[J]. Journal of Loss Prevention in the Process Industries, 2019, 62: 103934
doi: 10.1016/j.jlp.2019.103934
|
|
|
[9] |
刘钊春, 柴军瑞, 贾晓梅, 等 曙压入式通风掘进面有害气体浓度扩散数值模拟[J]. 岩土力学, 2009, 30 (Supple.2): 536- 539 LIU Zhaochun, CHAI Junrui, JIA Xiaomei, et al Numerical simulation of concentration diffusion of harmful gas in heading face with forced ventilation[J]. Rock and Soil Mechanics, 2009, 30 (Supple.2): 536- 539
|
|
|
[10] |
李孜军, 林晓光, 李明, 等 双洞隧道独头掘进CO扩散效应模拟分析[J]. 铁道科学与工程学报, 2013, 10 (4): 82- 87 LI Zijun, LIN Xiaoguang, LI Ming, et al Simulation analysis of CO diffusion for double tube tunneling excavated from single end[J]. Journal of Railway Science and Engineering, 2013, 10 (4): 82- 87
|
|
|
[11] |
秦跃平, 张苗苗, 崔丽洁, 等 综掘工作面粉尘运移的数值模拟及压风分流降尘方式研究[J]. 北京科技大学学报, 2011, 33 (7): 790- 794 QIN Yueping, ZHANG Miaomiao, CUI Lijie, et al Numerical simulation of dust migration and study on dust removal modes with the forced ventilation shunt in a fully mechanized workface[J]. Journal of University of Science and Technology Beijing, 2011, 33 (7): 790- 794
|
|
|
[12] |
曹传文 高海拔大坂山隧道通风技术参数的分析和修正研究[J]. 石家庄铁路职业技术学院学报, 2017, 16 (1): 33- 38 CAO Chuanwen Analysis and correction of high altitude Daban Mountain Tunnel ventilation parameters[J]. Journal of Shijiazhuang Institute of Railway Technology, 2017, 16 (1): 33- 38
doi: 10.3969/j.issn.1673-1816.2017.01.007
|
|
|
[13] |
苟红松, 李永生, 罗占夫 高海拔地区隧道施工通风风量计算及风机选型研究[J]. 隧道建设, 2012, 32 (1): 53- 56 GOU Hongsong, LI Yongsheng, LUO Zhanfu Study on air volume calculation and fan selection for tunneling ventilation in plateau area[J]. Tunnel Construction, 2012, 32 (1): 53- 56
|
|
|
[14] |
严涛, 包逸帆, 秦鹏程, 等 高海拔隧道施工通风及供氧关键参数研究综述[J]. 现代隧道技术, 2019, 56 (Supple.2): 572- 577 YAN Tao, BAO Yifan, QIN Pengcheng, et al Review on key parameters of ventilation and oxygen supply in high-altitude tunnel construction[J]. Modern Tunnelling Technology, 2019, 56 (Supple.2): 572- 577
|
|
|
[15] |
李琦, 于丽, 严涛, 等 高海拔隧道施工通风风管漏风率研究[J]. 铁道学报, 2019, 41 (1): 144- 148 LI Qi, YU Li, YAN Tao, et al Study on construction ventilation duct leakage rate in high altitude tunnel[J]. Journal of the China Railway Society, 2019, 41 (1): 144- 148
|
|
|
[16] |
陈湛文, 王明年, 郭佳城, 等 基于开孔面积的高海拔隧道风管漏风率研究[J]. 中国铁道科学, 2022, 43 (5): 60- 69 CHEN Zhanwen, WANG Mingnian, GUO Jiacheng, et al Study on air duct leakage rate in high-altitude tunnel based on opening area[J]. China Railway Science, 2022, 43 (5): 60- 69
|
|
|
[17] |
严涛, 王明年, 郭春, 等 高海拔隧道中考虑CO和烟雾的海拔高度系数[J]. 中南大学学报: 自然科学版, 2014, 45 (11): 4012- 4017 YAN Tao, WANG Mingnian, GUO Chun, et al Altitude coefficient considering CO and smoke emission in high altitude highway tunnels[J]. Journal of Central South University: Science and Technology, 2014, 45 (11): 4012- 4017
|
|
|
[18] |
严涛, 王明年, 郭春, 等 公路隧道考虑多车型的CO海拔高度系数研究[J]. 现代隧道技术, 2015, 52 (3): 8- 13 YAN Tao, WANG Mingnian, GUO Chun, et al On altitude coefficient considering CO from various kinds of vehicles in highway tunnels[J]. Modern Tunnelling Technology, 2015, 52 (3): 8- 13
|
|
|
[19] |
郭志杰, 孙涛, 张灿程, 等 高海拔超长隧道通风烟雾、CO基准排放量折减率取值建议[J]. 地下空间与工程学报, 2020, 16 (Supple.1): 341- 345 GUO Zhijie, SUN Tao, ZHANG Cancheng, et al Suggestions on discount rate of CO and smoke baseline emission of high altitude and super long tunnel ventilation[J]. Chinese Journal of Underground Space and Engineering, 2020, 16 (Supple.1): 341- 345
|
|
|
[20] |
曹正卯, 刘晓, 牛柏川 高海拔公路隧道施工期粉尘运移特性研究[J]. 地下空间与工程学报, 2019, 15 (3): 927- 935 CAO Zhengmao, LIU Xiao, NIU Baichuan Migration characteristics of dust during construction stage in highway tunnels at high altitude areas[J]. Chinese Journal of Underground Space and Engineering, 2019, 15 (3): 927- 935
|
|
|
[21] |
曹正卯, 杨其新, 郭春 高海拔地区铁路隧道施工期有害气体运移特性[J]. 中南大学学报: 自然科学版, 2016, 47 (11): 3948- 3957 CAO Zhengmao, YANG Qixin, GUO Chun Migration characteristics of poisonous gas during construction stage in railway tunnels at high altitude areas[J]. Journal of Central South University: Science and Technology, 2016, 47 (11): 3948- 3957
|
|
|
[22] |
蒋仲安, 曾发镔, 冯雪, 等 高海拔隧道爆破后粉尘污染动力学模型及影响因素[J]. 煤炭学报, 2023, 48 (1): 263- 278 JIANG Zhongan, ZENG Fabin, FENG Xue, et al Dynamic model and influencing factors of dust pollution after blasting in high altitude tunnel[J]. Journal of China Coal Society, 2023, 48 (1): 263- 278
|
|
|
[23] |
张国梁, 蒋仲安, 王睿 高海拔隧道出渣过程CO分布分析及需风量研究[J]. 湖南大学学报: 自然科学版, 2021, 48 (12): 174- 184 ZHANG Guoliang, JIANG Zhongan, WANG Rui Analysis of CO distribution and air demand during slagging in high altitude tunnel[J]. Journal of Hunan University: Natural Sciences, 2021, 48 (12): 174- 184
|
|
|
[24] |
孙三祥, 王文, 李国良, 等 高海拔隧道施工出碴车二次扬尘扩散规律[J]. 中国铁道科学, 2022, 43 (4): 53- 63 SUN Sanxiang, WANG Wen, LI Guoliang, et al Diffusion law of secondary dust caused by ballast truck in high altitude tunnel construction[J]. China Railway Science, 2022, 43 (4): 53- 63
|
|
|
[25] |
赵以蕙. 矿井通风与空气调节[M]. 徐州: 中国矿业大学出版社, 1990.
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|