Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (6): 1048-1055    DOI: 10.3785/j.issn.1008-973X.2021.06.004
Omnidirectional ventilation railway sound barrier capable of realizing wide frequency sound insulation
Ya-wen NIU1,2(),Cai-you ZHAO1,2,*(),Qiang YI3,Duo-jia SHI1,2,Jun-yuan ZHENG1,2,Rong CHEN1,2
1. MOE Key Laboratory of High-speed Railway Engineering, Southwest Jiaotong University, Chengdu 610031, China
2. School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China
3. Railway Engineering Research Institute, China Academy of Railway Sciences, Beijing 100081, China
Download: HTML     PDF(1517KB) HTML
Export: BibTeX | EndNote (RIS)      


A new railway sound barrier design was proposed aiming at the problems of poor ventilation performance and heavy weight of existing railway sound barriers. The structure was formed by a unit in which a spiral channel and a hollow channel were combined with each other in parallel. The coupling between the spiral channel and the hollow channel was realized based on the Fano resonance mechanism. The structure can effectively block the sound wave energy in a specific frequency band. This railway sound barrier had the advantages of thin thickness, small weight and good ventilation performance. The isolation effect of the meta unit structure on oblique incident sound waves was analyzed. The optimization analysis of the parameters of the meta unit structure was conducted, and the influence of the number of meta units on the sound insulation performance of the designed sound barrier was analyzed. The meta unit structure was verified by experiment. Results show that the structure can achieve wide frequency isolation of sound waves incident at different angles. The meta unit structure can effectively control the main frequency of wheel-rail noise after parameter optimization. Then the actual application requirements are met. The number of meta units will not affect the sound insulation performance of the sound barrier. The simulation results accorded with the experimental results.

Key wordsrailway traffic      acoustic metamaterial      Fano resonance      ventilation and sound barrier      noise control     
Received: 11 June 2020      Published: 30 July 2021
CLC:  U 211  
Fund:  国家重点研发计划资助项目(2016YFE0205200);高速铁路基础研究联合基金资助项目(U1734207);自然科学基金资助项目(51978585)
Corresponding Authors: Cai-you ZHAO     E-mail:;
Cite this article:

Ya-wen NIU,Cai-you ZHAO,Qiang YI,Duo-jia SHI,Jun-yuan ZHENG,Rong CHEN. Omnidirectional ventilation railway sound barrier capable of realizing wide frequency sound insulation. Journal of ZheJiang University (Engineering Science), 2021, 55(6): 1048-1055.

URL:     OR


针对现有铁路声屏障通风性能差和自重大的问题,提出新型铁路声屏障设计. 该结构是由螺旋通道和中空通路相互组合的超单元并联形成的,基于Fano共振机理实现螺旋通道和中空通路之间的耦合,能够对特定频带的声波能量实现高效阻隔,具有厚度薄、自重小、通风性能好等优点. 分析超单元结构对斜入射声波的隔离效果,对超单元结构进行参数优化分析,研究超单元数量对设计声屏障隔声性能的影响,对超单元结构进行实验验证. 研究结果表明,该结构可以对不同角度入射的声波实现宽频隔离;参数优化后的超单元结构可以有效控制轮轨噪声主频,已达到实际应用要求;超单元数量不会对声屏障的隔声性能产生影响;仿真与实验结果具有较高的一致性.

关键词: 铁路交通,  声学超材料,  Fano共振,  通风声屏障,  噪声控制 
Fig.1 Schematic diagram of sound barrier at front, side and top
Fig.2 Meta unit structure
R r d P r* h
50 25 52 54 37.5 3
Tab.1 Geometrical parameters of meta unit
Fig.3 Sound insulation mechanism and effect of meta unit
Fig.4 Two-dimensional acoustic pressure field and local velocity streamlines
Fig.5 Analysis of sound insulation effect of oblique incident sound waves
Fig.6 Changes of transmission loss and frequency with outer diameter
Fig.7 Changes of transmission loss and frequency with inner diameter
Fig.8 Changes of transmission loss and frequency with thickness
R r d P r* h
70 34 60 54 52.5 3
Tab.2 Geometrical parameters of meta unit after optimization
Fig.9 Meta unit structure after optimization
Fig.10 Effect of optimized meta unit on wheel-rail noise control
Fig.11 Schematic diagram of metamaterial sound barrier
Fig.12 Influence of number of meta units on sound insulation performance of sound barrier
Fig.13 Schematic diagram of sound barrier local structure
Fig.14 Physical map of meta unit sample
Fig.15 Schematic diagram of sound insulation performance test device
Fig.16 Comparison of simulation and experiment of meta unit
[1]   易强, 王平, 赵才友, 等 高架铁路环境噪声空间分布特性及控制措施效果研究[J]. 铁道学报, 2017, 39 (3): 120- 127
YI Qiang, WANG Ping, ZHAO Cai-you, et al Spatial distribution characteristics and reduction measures of environmental noise in elevated railway region[J]. Journal of the China Railway Society, 2017, 39 (3): 120- 127
doi: 10.3969/j.issn.1001-8360.2017.03.019
[2]   高莉萍, 刘达德 铁路声屏障插入损失的研究[J]. 铁道劳动安全卫生与环保, 1998, 25 (3): 7- 11
GAO Li-ping, LIU Da-de The study of insert loss from railway noise barrier[J]. Railway Occupational Safety, Health and Environmental Protection, 1998, 25 (3): 7- 11
[3]   周信, 肖新标, 何宾, 等 高速铁路声屏障插入损失影响因素及规律[J]. 西南交通大学学报, 2014, 49 (6): 1024- 1031
ZHOU Xin, XIAO Xin-biao, HE Bin, et al Influential factors and rules for insertion loss of high-speed railway noise barriers[J]. Journal of Southwest Jiaotong University, 2014, 49 (6): 1024- 1031
doi: 10.3969/j.issn.0258-2724.2014.06.014
[4]   张良涛 市域铁路声屏障设置研究[J]. 中国铁路, 2018, (8): 107- 112
ZHANG Liang-tao The study on sound barrier for suburban railway[J]. China Railway, 2018, (8): 107- 112
[5]   苏卫青 铁路声屏障设计综述[J]. 铁道工程学报, 2018, 35 (8): 86- 91
SU Wei-qing The summary of design of railway sound barrier[J]. Journal of Railway Engineering Society, 2018, 35 (8): 86- 91
doi: 10.3969/j.issn.1006-2106.2018.08.017
[6]   王卫东, 张营 高速铁路声屏障存在的问题及展望[J]. 工程与建设, 2020, 34 (1): 5- 7
WANG Wei-dong, ZHANG Ying Problems and prospects of high speed railway sound barrier[J]. Engineering and Construction, 2020, 34 (1): 5- 7
[7]   GHAFFARIVARDAVAGH R, NIKOLAJCZYK J, ANDERSON S, et al Ultra-open acoustic metamaterial silencer based on fano-like interference[J]. Physical Review B, 2019, 99 (2): 024302
doi: 10.1103/PhysRevB.99.024302
[8]   LIANG Zi-xian, LI Jen-sen Extreme acoustic metamaterial by coiling up space[J]. Physical Review Letters, 2012, 108 (11): 114301
doi: 10.1103/PhysRevLett.108.114301
[9]   JIANG Xue, LI Yong, LIANG Bin, et al Convert acoustic resonances to orbital angular momentum[J]. Physical Review Letters, 2016, 117 (3): 034301
doi: 10.1103/PhysRevLett.117.034301
[10]   SUN Man, FANG Xin-sheng, MAO Dong-xing, et al Broadband acoustic ventilation barriers[J]. Physical Review Applied, 2020, 13 (4): 044028
doi: 10.1103/PhysRevApplied.13.044028
[11]   林远鹏, 梁彬, 杨京, 等 可实现宽频宽角度隔声的薄层通风结构[J]. 南京大学学报: 自然科学, 2019, 55 (5): 791- 795
LIN Yuan-peng, LIANG Bin, YANG Jing, et al Thin ventilated layer for broadband and wide-angle sound insulation[J]. Journal of Nanjing University: Natural Science, 2019, 55 (5): 791- 795
[12]   GENET C, VAN EXTER M P, WOERDMAN J P Fano-type interpretation of red shifts and red tails in hole array transmission spectra[J]. Optics Communications, 2003, 225 (4): 331- 336
[13]   林远鹏. 基于声学超材料的声吸收和声隔离的研究[D]. 南京: 南京大学, 2019: 40−54.
LIN Yuan-peng. Investigation on acoustic absorption and acoustic isolation based on acoustic metamaterial[D]. Nanjing: Nanjing University, 2019: 40−54.
[14]   张海龙. 基于声学超材料的声屏障与隔声管道的研究[D]. 南京: 南京大学, 2018: 31−42.
ZHANG Hai-long. Investigation on acoustic barrier and acoustic insulation pipe based on acoustic metamaterial[D]. Nanjing: Nanjing University, 2018: 31−42.
[15]   李坤. 螺旋型声学超材料的宽带特性及其应用研究[D]. 南京: 南京大学, 2018: 31−39.
LI Kun. Investigations on broadband characteristics and applications of helical-like acoustic metamaterials[D]. Nanjing: Nanjing University, 2018: 31−39.
[16]   刘盛春, 李坤 超宽带声螺旋结构[J]. 物理, 2017, 46 (11): 749- 756
LIU Sheng-chun, LI Kun Ultra-broadband helical-structure acoustic metamaterials[J]. Physics, 2017, 46 (11): 749- 756
doi: 10.7693/wl20171105
[17]   MADHAVAN V, CHEN W, JAMNEALA T, et al Tunneling into a single magnetic atom: spectroscopic evidence of the kondo resonance[J]. Science, 1998, 280 (5363): 567- 569
doi: 10.1126/science.280.5363.567
[18]   HEIN S, KOCH W, NANNEN L Fano resonances in acoustics[J]. Journal of Fluid Mechanics, 2010, 664: 238- 264
doi: 10.1017/S0022112010003757
[19]   LI Yong, LIANG Bin, ZOU Xin-ye, et al Extraordinary acoustic transmission through ultrathin acoustic metamaterials by coiling up space[J]. Applied Physics Letters, 2013, 103 (6): 063509
doi: 10.1063/1.4817925
[20]   DENG Yong-quan, XIAO Xin-biao, HE Bin, et al Analysis of external noise spectrum of high-speed railway[J]. Journal of Central South University, 2014, 21 (12): 4753- 4761
doi: 10.1007/s11771-014-2485-3
[21]   杨新文, 王金, 练松良 轨道交通轮轨噪声研究进展[J]. 铁道学报, 2017, 39 (9): 100- 108
YANG Xin-wen, WANG Jin, LIAN Song-liang Review on wheel/rail noise in rail transit[J]. Journal of the China Railway Society, 2017, 39 (9): 100- 108
doi: 10.3969/j.issn.1001-8360.2017.09.015
[22]   易强, 王宇航, 高鑫, 等 轨道交通周期型声屏障带隙特性及其降噪性能[J]. 中南大学学报: 自然科学版, 2019, 50 (5): 1263- 1270
YI Qiang, WANG Yu-hang, GAO Xin, et al Band gap properties and noise reduction performances of periodic noise barriers in rail transit[J]. Journal of Central South University: Science and Technology, 2019, 50 (5): 1263- 1270
No related articles found!