Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (1): 169-175    DOI: 10.3785/j.issn.1008-973X.2024.01.018
    
Active control strategy of cooling capacity based on pulse tube refrigerator of dual temperature zones
Hejun HUI1,2(),Yinong WU1,2,Jiantang SONG1,Wang YIN1,2,Zhenhua JIANG1,2,Shaoshuai LIU1,2,*()
1. Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
Download: HTML     PDF(1317KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A method was proposed where an active phase shifter with acoustic power recovery was applied to actively control their cooling supplies there in response to the new requirement of variable cooling supplies in dual temperature zones in space exploration. The influence characteristics on the distribution of the cold finger acoustic power and the efficiency of the regenerator in the dual temperature zones were obtained by analyzing the influence of the piston movement characteristics of the phase shifter in the high-temperature zone on the impedance of the cold fingers in the dual-temperature zones. The cryocooler can actively supply the desired cooling powers (@80 K and 40 K), respectively. The numerical calculation results show that the phase difference of the phase shifter piston mainly influences the cooling capacity in the high-temperature zone. The amplitude and phase difference of the phase shifter piston significantly affects the cooling capacity in the low-temperature zone. The experimental results show that the cooling capacity in the 80 K temperature zone can be actively adjusted in the range of 9.2 W to 23.7 W with the active control of the phase shifter, and the cooling capacity in the 40 K temperature zone can be actively adjusted in the range of 3.2 W to 4.5 W.



Key wordspulse tube refrigerator      active phase shifter      dual cooling temperature zones      impedance analysis      control strategy     
Received: 22 March 2023      Published: 07 November 2023
CLC:  TK 11  
Fund:  国家自然科学基金资助项目(51806231);中国科学院战略性先导科技专项(B类)项目(XDB35000000,XDB35040102)
Corresponding Authors: Shaoshuai LIU     E-mail: hhun@mail.ustc.edu.cn;liushaoshuai@mail.sitp.ac.cn
Cite this article:

Hejun HUI,Yinong WU,Jiantang SONG,Wang YIN,Zhenhua JIANG,Shaoshuai LIU. Active control strategy of cooling capacity based on pulse tube refrigerator of dual temperature zones. Journal of ZheJiang University (Engineering Science), 2024, 58(1): 169-175.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.01.018     OR     https://www.zjujournals.com/eng/Y2024/V58/I1/169


双温区脉管制冷机的制冷量主动调控策略

针对空间探测中须在双温区提供不同制冷量的新需求,提出利用声功回收主动调相器对双温区制冷量进行主动调控的方法. 研究分析高温区调相器活塞运动特性对双温区冷指阻抗的影响,得到调相器对双温区冷指声功率分配及回热器效率的影响特性,实现80 K和40 K双温区制冷量主动调控. 数值计算结果显示,调相器相位差对高温区制冷量影响较大,调相器振幅和相位差对低温区制冷量均有明显的影响. 实验结果表明,采用基于主动控制调相器活塞运动特性的调节策略,80 K温区制冷量可以在9.2~23.7 W内主动调节,40 K温区制冷量可以在3.2~4.5 W内主动调节.


关键词: 脉管制冷机,  主动调相,  双制冷温区,  阻抗分析,  调控策略 
Fig.1 Schematic diagram of single compressor-driven dual-temperature pulse tube refrigerator with active power recovery phase shifters
制冷机部件 参数 参数值
压缩机 活塞直径 38 mm
高温区冷指 回热器尺寸
(长度×直径)
62 mm×32 mm
回热器填料 350#不锈钢丝网
脉冲管尺寸 70 mm×16 mm
低温区冷指 回热器尺寸 78 mm×26 mm
回热器填料 350#和400#不锈钢丝网混合填充
脉冲管尺寸 86 mm×12 mm
高温区调相器 活塞直径 22 mm
低温区调相器 活塞直径 18 mm
Tab.1 Main structural parameters of cryocooler
Fig.2 Cold finger inlet impedance amplitude variations vs. motion characteristics of high-temperature zone phase-shifter
Fig.3 Cold finger inlet impedance phase difference variations vs. motion characteristics of high-temperature zone phase-shifter
Fig.4 Cold finger acoustic power distribution vs. motion characteristics of high-temperature zone phase-shifter
Fig.5 Impedance phase differences at cold ends vs. high-temperature zone phase-shifter
Fig.6 Regenerator efficiencies vs. motion characteristics of high-temperature zone phase-shifter
Fig.7 Cooling capacities and cooling efficiencies vs. motion characteristics of high-temperature zone phase-shifter
Fig.8 Picture of pulse tube refrigerator of dual temperature zones
Fig.9 Experimental results of active control of cooling capacities in dual temperature zones
Fig.10 Compressor input power and output acoustics power variations vs. high-temperature zone phase-shifter
[1]   JACO C, NGUYEN T, TWARD E. High capacity two-stage coaxial pulse tube cooler [C]// Proceedings of the Transactions of the Cryogenic Engineering Conference. Chattanooga: AIP, 2008: 530-537.
[2]   CHAO Y, WANG B, LI H, et al A two-stage thermally-coupled pulse tube cryocooler working at 35 K for space application[J]. Acta Astronautica, 2022, 191 (2): 193- 203
[3]   朱海峰, 吴亦农, 蒋燕阳, 等 单压缩机驱动双冷指阻抗特性研究[J]. 工程热物理学报, 2017, 38 (6): 1166- 1170
ZHU Hai-feng, WU Yi-nong, JIANG Yan-yang, et al Investigation on impedance character of two cold fingers driven by one compressor[J]. Journal of Engineering Thermophysics, 2017, 38 (6): 1166- 1170
[4]   ABOLGHASEMI M A, LIANG K, STONE R, et al Stirling pulse tube cryocooler using an active displacer[J]. Cryogenics, 2018, 96 (8): 53- 61
[5]   SWIFT G W, GARDNER D L, BACKHAUS S Acoustic recovery of lost power in pulse tube refrigerators[J]. The Journal of the Acoustical Society of America, 1999, 105 (2): 711- 724
doi: 10.1121/1.426262
[6]   ZHU S, NOGAWA M Pulse tube stirling machine with warm gas-driven displacer[J]. Cryogenics, 2010, 50 (5): 320- 330
doi: 10.1016/j.cryogenics.2010.01.011
[7]   ZHI X, QIU L, PFOTENHAUER J M, et al Refrigeration mechanism of the gas parcels in pulse tube cryocoolers under different phase angles[J]. International Journal of Heat and Mass Transfer, 2016, 103 (12): 382- 389
[8]   WANG X, ZHANG Y, LI H, et al A high efficiency hybrid stirling-pulse tube cryocooler[J]. AIP Advances, 2015, 5 (3): 037127
doi: 10.1063/1.4915900
[9]   LIN Y, GUO Z, GUO Z, et al Experimental investigation of the connecting tube effect on a step displacer type two stage pulse tube refrigerator[J]. Applied Thermal Engineering, 2020, 173 (10): 115229
[10]   WANG L, WU M, SUN X, et al A cascade pulse tube cooler capable of energy recovery[J]. Applied Energy, 2016, 164 (4): 572- 578
[11]   XU J, HU J, HU J, et al Cascade pulse-tube cryocooler using a displacer for efficient work recovery[J]. Cryogenics, 2017, 86 (6): 112- 117
[12]   HUI H, SONG J, LIU S, et al Energy conversion efficiency improvement of a stirling type PTR for dual temperature cooling by adopting two active work-recovery phase shifters[J]. International Journal of Refrigeration, 2023, 146 (2): 452- 461
[13]   LIU S S, CHEN X, ZHANG A K, et al Investigation of the inertance tube of a pulse tube refrigerator operating at high temperatures[J]. Energy, 2017, 123 (6): 378- 385
[1] Fei JU,Wei-chao ZHUANG,Liang-mo WANG,Jing-xing LIU,Qun WANG. Velocity planning strategy for economic cruise of hybrid electric vehicles[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1538-1547.
[2] Ying-long CHEN,Fu-jun SONG,Jun-hao ZHANG,Wei SONG,Yong-jun GONG. Telerobotic shared control strategy based on telepresence: a review[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 831-842.
[3] DU Jin-hua, XUE Yun-tian, LIU Quan-wei. Parameter matching calibration and implementation of permanent magnet integrated starter/generator system[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(9): 1851-1860.
[4] YANG Chun ning, FANG Jia wei, LI Chun, GE Hui. Hypersonic vehicle blended control methodology based on stability criterion[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(2): 422-428.
[5] WANG Yang wei, YAN Yong cheng, LIU Kai, ZHAO Dong biao. Development and swimming experimental research on bionic stingray robot[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(1): 106-112.
[6] GE Zheng, WANG Wei rui, WANG Jun ding. Control strategy for brake clearance adjustment of electronic mechanical brake[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(1): 138-144.
[7] ZHAO Peng yu, CHEN Ying long, ZHOU Hua. Overview of hydraulic hybrid engineering machinery system and control strategy[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(3): 449-459.
[8] ZHAO Peng yu, CHEN Ying long, ZHOU Hua. Overview of hydraulic hybrid engineering machinery system and control strategy[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(2): 0-.
[9] ZHU Shao peng, LIN Ding, XIE Bo zhen, YU Xiao li, HAN Song. Driving force hierarchical control strategy of electric vehicle[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(11): 2094-2099.
[10] XIAO Yang, GUAN Cheng, WANG Fei. Energy management strategy for torque coupling based hydraulic hybrid excavator[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(1): 70-77.
[11] XU Bing, CHENG Min, YANG Hua yong, ZHANG Jun hui. Electrohydraulic flow matching system with bypass pressure compensation[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(9): 1762-1767.
[12] WANG Jian, HU Xi-xing, GUO Ji-feng. Attitude detection and control of two-degree-of-freedom ultrasonic motor[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(5): 871-876.
[13] JIANG Ji-hong, LIU Hong-peng, JIANG Zhen-zhou, WANG Wei. Supercapacitor selection and control strategy of energy storage elevator[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(4): 610-615.
[14] CHEN Ping-lu, YU Xiao-li, NIE Xiang-hong, FANG Yi-dong. Control strategy for parallel hybrid air-fuel vehicle[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(2): 348-353.
[15] DING Hui, HU Xie-he. Review of AC asynchronous motor speed control strategy[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(1): 50-58.