Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (3): 591-597    DOI: 10.3785/j.issn.1008-973X.2023.03.017
    
Influence of exhaust wind cowls on wind driven ventilation
Guo-qing HE(),Yi-tian TANG
College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
Download: HTML     PDF(1381KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A scaled model of solar chimney building was designed and tested in a wind tunnel, to investigate the impact of wind pressure related factors and wind cowls on the discharging performance of high exhaust of a building. A comparison study between a common elbow outlet and two wind cowls (a louver type and a baffle type) was conducted to investigate their influences on wind pressure distributions and the resulting ventilation rate. Results show that under the gradient-profiled wind, the influence of the net height difference between the inlet and outlet on the ventilation rate cannot be ignored. The resulting wind pressure at the high exhaust was in general greater than that of the lower inlet. When the roof-mounted elbow outlet was facing the wind, the reverse flow occurred, which was against the chimney flow and weakened the stack ventilation design. Both wind cowls prevented the reverse flow. However, the baffle type was superior to the other. It produced the largest ventilation rate among the three outlets except for the side-wind case, where its flow rate was 28% lower than that of the elbow outlet case. The flow rate of the baffle type outlet was 57% and 33% higher than that of the elbow outlet in the windward and leeward directions, respectively. In the design of building ventilation systems with high exhaust, such as solar chimneys, the inlet needs to be placed at windward side as much as possible, while the outlet needs to be placed as high as possible. And the baffle type wind cowl is recommended.



Key wordswind cowl      solar chimney      wind driven ventilation      wind tunnel test      gradient wind      openings arrangement     
Received: 21 February 2022      Published: 31 March 2023
CLC:  TU 18  
Fund:  国家自然科学基金资助项目(51678518)
Cite this article:

Guo-qing HE,Yi-tian TANG. Influence of exhaust wind cowls on wind driven ventilation. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 591-597.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.03.017     OR     https://www.zjujournals.com/eng/Y2023/V57/I3/591


风压通风中排风风帽的影响

为了研究建筑高位排风口排风时风压影响因素以及风帽的作用,设计太阳能烟囱建筑缩尺模型,通过风洞试验,对比普通弯管出口和2种风帽(百叶型和挡板型)对建筑风压分布及烟囱内通风量的影响. 结果表明:在梯度风下,进出口高度差对风压通风的影响不可忽视,当出口位置高于入口位置时,出口处风压往往大于入口处风压. 当屋顶普通弯管出口遇到迎面风向时,产生的与烟囱热羽流方向相反的倒灌通风会破坏烟囱的气流组织设计. 2种风帽均可阻止气流倒灌,其中挡板型风帽综合性能更优. 通风量除了在侧风向低于弯管出口28%外,在迎风和背风方向上均为三者最大,并分别高出弯管出口57%与33%. 在包括太阳能烟囱在内的建筑高位排风设计中,除了入口应尽量处于主流风向的迎风面外,出口应布置在高位,并推荐使用挡板型风帽.


关键词: 风帽,  太阳能烟囱,  风压通风,  风洞实验,  梯度风,  开口布置 
Fig.1 Wind tunnel test layout
Fig.2 Solar chimney building model and distributions of measuring points
Fig.3 Wind cowl models and distributions of measuring points
Fig.4 Five wind profiles in wind tunnel test (reference height is 0.45 m)
工况 开口封闭 开口打开
$ {p}_{\mathrm{i}\mathrm{n}} $ $ {p}_{\mathrm{o}\mathrm{u}\mathrm{t}} $ Δp $ {p}_{\mathrm{i}\mathrm{n}} $ $ {p}_{\mathrm{o}\mathrm{u}\mathrm{t}} $ Δp
Pa
1 9.518 12.766 ?3.248 10.499 15.023 ?4.525
2 ?5.749 ?10.434 4.685 ?6.551 ?7.928 1.377
3 ?1.398 ?10.026 8.628 ?0.776 ?7.297 6.521
4 ?5.504 12.766 ?18.270 ?5.062 16.254 ?21.316
5 ?1.509 ?10.434 8.925 ?1.606 ?6.238 4.633
6 ?6.213 ?10.026 3.814 ?5.272 ?7.677 2.405
7 9.212 ?6.163 15.375 9.309 ?6.511 15.821
Tab.1 Comparison of wind pressures at center of inlet and outlet (reference velocity is 5 m/s)
Fig.5 Comparison of surface pressure coefficients between two models under gradient wind
Fig.6 Pressure coefficients of cube model under uniform flow [21]
Fig.7 Layout of room inlet and outlet and four tested wind directions
Fig.8 Volume flow rates under different layouts of inlet and outlet
类型 α/(°) pin/Pa $ {\overline{p}}_{\mathrm{i}\mathrm{n}}/\mathrm{P}\mathrm{a} $ pout/Pa $ {\overline{p}}_{\mathrm{o}\mathrm{u}\mathrm{t}}/\mathrm{P}\mathrm{a} $ Δ $ {\overline{p}} $/Pa
测点6′ 测点7′ 测点9′ 测点10′ 测点15′ 测点16′ 测点13′ 测点14′ 测点11′ 测点12′
百叶型风帽 0 7.872 8.132 7.898 7.740 7.910 5.249 5.032 5.025 5.066 4.972 5.085 5.071 2.839
90 ?5.635 ?5.604 ?5.612 ?5.426 ?5.569 ?7.092 ?7.282 ?7.145 ?6.709 ?7.533 ?7.129 ?7.148 1.579
180 ?1.852 ?1.571 ?1.744 ?1.512 ?1.669 ?2.887 ?2.938 ?2.918 ?3.074 ?2.934 ?2.868 ?2.936 1.267
挡板型风帽 0 5.359 5.365 5.304 5.393 5.355 ?3.640 ?3.748 ?2.769 ?3.324 ?3.178 ?3.399 ?3.343 8.690
90 ?5.310 ?5.413 ?5.346 ?5.127 ?5.299 ?6.654 ?6.674 ?6.557 ?6.709 ?6.645 ?7.087 ?6.721 1.422
180 ?2.990 ?2.959 ?3.090 ?2.676 ?2.928 ?8.296 ?8.250 ?7.899 ?8.187 ?8.080 ?8.400 ?8.185 5.257
弯管出口 0 12.679 12.766 12.851 12.345 12.660 13.662 13.382 14.973 14.971 14.825 14.779 14.432 ?1.772
90 ?6.391 ?6.312 ?6.132 ?6.318 ?6.289 ?8.592 ?8.656 ?8.357 ?7.898 ?8.575 ?8.485 ?8.427 2.140
180 ?3.951 ?3.890 ?3.725 ?3.738 ?3.826 ?7.738 ?7.836 ?7.951 ?7.996 ?7.624 ?7.716 ?7.810 3.984
Tab.2 Measured pressures at inlet and outlet of room with different exhausts (reference velocity is 5 m/s)
Fig.9 Volume flow rates versus reference velocity at three exhausts
[1]   HONG S, HE G, GE W, et al Annual energy performance simulation of solar chimney in a cold winter and hot summer climate[J]. Building Simulation, 2019, 12 (5): 847- 856
doi: 10.1007/s12273-019-0572-y
[2]   KONG J, NIU J, LEI C A CFD based approach for determining the optimum inclination angle of a roof-top solar chimney for building ventilation[J]. Solar Energy, 2020, 198: 555- 569
doi: 10.1016/j.solener.2020.01.017
[3]   张明杰, 郜志 多层建筑太阳能烟囱的全年通风潜力评价[J]. 西安建筑科技大学学报: 自然科学版, 2021, 53 (2): 283- 288
ZHANG Ming-jie, GAO Zhi Evaluation of the annual ventilation potential of solar chimneys for multi-story buildings[J]. Journal of Xi'an University of Architecture and Technology: Natural Science Edition, 2021, 53 (2): 283- 288
[4]   HIRUNLABH J, KONGDUANG W, NAMPRAKAI P, et al Study of natural ventilation of houses by a metallic solar wall under tropical climate[J]. Renewable Energy, 1999, 18 (1): 109- 119
doi: 10.1016/S0960-1481(98)00783-6
[5]   BANSAL N K, MATHUR R, BHANDARI M S Solar chimney for enhanced stack ventilation[J]. Building and Environment, 1993, 28 (3): 373- 377
doi: 10.1016/0360-1323(93)90042-2
[6]   SANDBERG M. Cooling of building integrated photovoltaics by ventilation air [EB/OL]. [2022-04-07]. https://www.aivc.org/sites/default/files/airbase_12533.pdf.
[7]   CHEN Z D, BANDOPADHAYAY P, HALLDORSSON J, et al An experimental investigation of a solar chimney model with uniform wall heat flux[J]. Building and Environment, 2003, 38 (7): 893- 906
doi: 10.1016/S0360-1323(03)00057-X
[8]   HE G, ZHANG J, HONG S A new analytical model for airflow in solar chimneys based on thermal boundary layers[J]. Solar Energy, 2016, 136: 614- 621
doi: 10.1016/j.solener.2016.07.041
[9]   HE G A general model for predicting the airflow rates of a vertically installed solar chimney with connecting ducts[J]. Energy and Buildings, 2020, 229: 110481
doi: 10.1016/j.enbuild.2020.110481
[10]   HE G, WU Q, LI Z, et al Ventilation performance of solar chimney in a test house: field measurement and validation of plume model[J]. Building and Environment, 2021, 193: 107648
doi: 10.1016/j.buildenv.2021.107648
[11]   ZAMORA B, KAISER A S Numerical study on mixed buoyancy-wind driving induced flow in a solar chimney for building ventilation[J]. Renewable Energy, 2010, 35 (9): 2080- 2088
doi: 10.1016/j.renene.2010.02.009
[12]   CHIU Y H, ETHERIDGE D W Experimental technique to determine unsteady flow in natural ventilation stacks at model scale[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2004, 92 (3/4): 291- 313
[13]   HOSIEN MA, SELIM S M Effects of the geometrical and operational parameters and alternative outer cover materials on the performance of solar chimney used for natural ventilation[J]. Energy and Buildings, 2017, 138: 355- 367
doi: 10.1016/j.enbuild.2016.12.041
[14]   NEVES L O, MARQUES DA SILVA F Simulation and measurements of wind interference on a solar chimney performance[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 179: 135- 145
doi: 10.1016/j.jweia.2018.05.020
[15]   SHI L Impacts of wind on solar chimney performance in a building[J]. Energy, 2019, 185: 55- 67
doi: 10.1016/j.energy.2019.07.056
[16]   李丹. 风口、风帽强化自然通风效果的理论基础研究 [D]. 西安: 西安建筑科技大学, 2004.
LI Dan. The scientific basis about efficient shutters and hoods for natural ventilation [D]. Xi'an: Xi'an University of Architecture and Technology, 2004.
[17]   KALANTAR V Numerical simulation of cooling performance of wind tower (Baud-Geer) in hot and arid region[J]. Renewable Energy, 2008, 34 (1): 246- 254
[18]   吕维勋, 吴妍, 臧建彬 基于捕风器的建筑被动通风性能研究[J]. 建筑科学, 2021, 37 (6): 137- 142
LYU Wei-xun, WU Yan, ZANG Jian-bin Study on passive ventilation performance of buildings using wind catcher[J]. Building Science, 2021, 37 (6): 137- 142
[19]   郭春信 风帽的合理设计可强化地下空间自然通风[J]. 地下空间, 1994, 14 (1): 33- 37
GUO Chun-xin The reasonable design of hood can strengthen the natural ventilation of underground space[J]. Underground Space, 1994, 14 (1): 33- 37
[20]   FRANKE J, HELLSTEN A, SCHLÜNZEN H, et al. Best practice guideline for the CFD simulation of flows in the urban environment: action 732 [R]. Brussels: COST Office, 2007.
[21]   CASTRO I P, ROBINS A G The flow around a surface-mounted cube in uniform and turbulent streams[J]. Journal of Fluid Mechanics, 1977, 79 (2): 307- 335
doi: 10.1017/S0022112077000172
[22]   任秀宏. 热压驱动太阳能烟囱与室内空气多元对流特性 [D]. 武汉: 武汉大学, 2017.
REN Xiu-hong. Multi-component convection in the solar chimney and ventilated enclosure driven by thermal buoyancy [D]. Wuhan: Wuhan University, 2017.
[1] Ming-feng HUANG,Xin-rui WEI,He-kai YE,Jian-yun YE,Wen-juan LOU. Wind-induced response of crane structure with double flat arms for long-span transmission towers[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1351-1360.
[2] Guo-qing HE,Da LV. Enhancing solar chimney ventilation efficiency by insertion of transparent panel[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(12): 2260-2266.
[3] Guo-hui SHEN,Yu-nan BAO,Yong GUO,Gang SONG,Yi-wen WANG. Along-line wind loads and distribution patterns of transmission lines[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1658-1665.
[4] Hao-su LIU,Jun-qing LEI. Identification of three-component coefficients of double deck truss girder for long-span bridge[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1092-1100.
[5] Ming-feng HUANG,He-kai YE,Wen-juan LOU,Xuan-tao SUN,Jian-yun YE. Wind-induced vibration and fatigue analysis of long span lattice structures considering distribution of wind speed and direction[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1916-1926.
[6] LOU Wen-juan, LIANG Hong-chao, BIAN Rong. Apply member loads to calculate wind load shape coefficient of angle-made-transmission tower[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(9): 1631-1637.
[7] LIU Bo-kai, GAO Hong-li, WU Ying-chuan, ZHANG Xiao-qing, LI Shi-chao. New suspension force measuring system in impulse combustion wind tunnel[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(4): 619-627.
[8] ZHANG Yang, SHEN Guo-hui, YU Shi-ce, MA Yu-cong, ZHANG Rui. Experimental study on aeolian noise generated by transmission lines using wind tunnel testing[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(8): 1494-1499.
[9] XU Hai wei, LOU Wen juan, LI Tian hao, LIANG Hong chao, ZHANG Li gang, LU Ming. Wind-induced swing investigation on transmission line jumper wire under hilly terrain[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(2): 264-272.
[10] SHEN Guo hui, YAO Dan, YU Shi ce, LOU Wen juan, XING Yue long, PAN Feng. Wind tunnel test of wind field characteristics on isolated hill and two adjacent hills[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(5): 805-812.
[11] LUO Yao-zhi, SUN Bin. Wind tunnel test and numerical simulation of wind-induced static pressure field around a building[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(7): 1148-1156.
[12] LIN Wei, LOU Wen-juan, SHENTU Tuan-bing, HUANG Ming-feng. Peak factor of non-Gaussian pressure process on complex
super-tall building
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(4): 691-697.
[13] SHEN Guo-hui, WANG Ning-bo, SUN Bing-nan, LOU Wen-juan. Calculation of wind-induced responses and equivalent static wind loads
of high-rise buildings based on wind tunnel tests
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(3): 448-453.
[14] SHEN Guo-hui,YU Guan-peng,SUN Bing-nan,LOU Wen-juan,LI Qing-xiang,YANG Shi-chao. Interference effect of wind-induced response on
large hyperbolic cooling tower
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(1): 33-38.
[15] ZHANG Li-gang, LOU Wen-juan, SHENTU Tuan-bing. Torsional wind load with irregular shape[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(6): 1094-1099.