Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)  2017, Vol. 51 Issue (10): 1920-1927    DOI: 10.3785/j.issn.1008-973X.2017.10.005
Automatic Technology     
Fine registration with adaptive distance function and iterative closest surface
ZHANG Mei, PENG Xing-xing
Information Institute, Guizhou University of Finance and Economics, Guiyang 550025, China
Download:   PDF(6803KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A registration method from three-dimensional depth image to three-dimensional geometric models was proposed aiming at laser scanning point cloud data from multi angle of the complex curved surface object. The effective initial matching points array was constructed with curvature invariant features and normalized zero-mean cross-correlation coefficient (NZCC)according to the invariant characteristics of the relative position of the space points in the condition of rigid body transformation. The coordinate transformation of the matching feature points was solved based on the unit quaternion. Then the data coarse registration was completed. The method and procedure for determining the modified coefficient were discussed, and mean error of different correction factors was calculated in order to get the best modified coefficient. The different perspectives of clouds were optimally matched in three-dimensional space by using fine matching technology based on adaptive distance function and the improved iterative closest surface. The registration error was calculated according to the matching results, and the registration accuracy and speed were analyzed. The numerical experiments results show that the method can effectively improve the efficiency of registration in the guarantee of the registration accuracy.



Received: 01 August 2016      Published: 27 September 2017
CLC:  TP391  
Cite this article:

ZHANG Mei, PENG Xing-xing. Fine registration with adaptive distance function and iterative closest surface. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(10): 1920-1927.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2017.10.005     OR     http://www.zjujournals.com/eng/Y2017/V51/I10/1920


适应性距离函数与迭代最近曲面片精细配准

针对复杂曲面物体多视角激光扫描点云数据,提出从深度图像到完整几何模型的配准方法.根据空间点相对位置在刚体变换下的不变特性,利用曲率不变特征和归一化零均值互相关系数构造有效的初始匹配点对数组.基于单位四元数对匹配的特征点对进行坐标变换求解,完成数据粗略配准.探讨改正系数的确定方法与步骤,计算不同改正系数下的均值误差,得到最佳改正系数.运用适应性距离函数和改进迭代最近曲面片精细匹配技术,将不同视角点云在三维空间进行最优化匹配.根据匹配结果计算配准误差,对配准精度和速度进行统计分析.数值试验结果表明,该方法在保证配准精度的前提下能够有效地提高配准效率.

[1] 左超,鲁敏,谭志国,等.一种新的点云拼接算法[J].中国激光,2012,39(12):1212004-1-1212004-8. ZUO Chao, LU Min, TAN Zhi-guo, et al. A novel algorithm for registration of point clouds[J]. Chinese Journal of Lasers, 2012, 39(12):1212004-1-1212004-8.
[2] SAHILLIOGLU Y, YEMEZ Y. Coarse-to-fine surface reconstruction from silhouettes and range data using mesh deformation[J].Computer Vision and Image Understanding, 2010, 114(3):334-348.
[3] BESL P J, MCKAY N D. A method for registration of 3-D shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2):239-256.
[4] CHOW C K, TSUI H T, LEE T. Surface registrationusing a dynamic genetic algorithm[J]. Pattern Recognition, 2004, 37(1):105-117.
[5] 林洪彬,刘彬,张玉存.逆向工程中散乱点云变尺度配准算法研究[J].机械工程学报,2011, 47(14):1-6. LIN Hong-bin, LIU Bin, ZHANG Yu-cun. Research on a variable scale registration algorithm for scattered point clouds in reverse engineering[J]. Journal of Mechanical Engineering, 2011, 47(14):1-6.
[6] 秦绪佳,王建奇,郑红波,等.三维不变矩特征估计的点云拼接[J].机械工程学报,2013,49(1):129-134. QIN Xu-jia, WANG Jian-qi, ZHENG Hong-bo, et al. Point clouds registration of 3D moment invariant feature estimation[J]. Journal of Mechanical Engineering, 2013, 49(1):129-134.
[7] 王蕊,李俊山,刘玲霞,等.基于几何特征的点云配准算法[J].华东理工大学学报,2009,35(5):768-773. WANG Rui, LI Jun-shan, LIU Ling-xia, et al. Registration of point clouds based on gemotric properties[J]. East China University of Science and Technology, 2009, 35(5):768-773.
[8] BASDOGAN C, OZTIRELI A C. A new feature based method for robust and efficient rigid-body registration of overlapping point clouds[J]. The Visual Computer, 2008, 24(7-9):679-688.
[9] 高鹏东,彭翔,李阿蒙,等.ICP框架下基于表面间平均体积测度的深度像配准[J].计算机辅助设计与图形学学报,2007,19(6):719-724. GAO Peng-dong, PENG Xiang, LI A-meng, et al. Range image registration with ICP frame using surface mean inter-space measure[J]. Journal of Computer-Aided Design and Computer Graphics, 2007, 19(6):719-724.
[10] 陈维桓.微分几何[M].北京:北京大学出版社,2006:77-184.
[11] ZHANG Mei, WEN Jing-hua, FAN Yong-long. A new registration method for scattered point clouds from multi-views[J]. Information Technology Journal, 2013, 12(19):5005-5010.
[12] 孙龙祥,程义民,王以孝,等.深度图像分析[M].北京:电子工业出版社,1996.
[13] 张梅,文静华,张祖勋,等.基于欧氏距离测度的激光点云配准[J].测绘科学,2010,35(3):5-8. ZHANG Mei, WEN Jing-hua, ZHANG Zu-xun, et al. Laser points cloud registration using Euclid distance measure[J]. Science of Surveying and Mapping, 2010, 35(3):5-8.
[14] POTTMANN H, HUANG Q X, YANG Y L, et al. Geometry and convergence analysis of algorithms for registration of 3D shapes[J]. International Journal of Computer Vision, 2006, 67(3):277-296.
[15] 刘宇,熊有伦.基于有界k-d树的最近点搜索算法[J].华中科技大学学报:自然科学版,2008,36(7):73-76. LIU Yu, XIONG You-lun. Algorithm for searching nearest-neighbor based on the bounded k-d tree[J]. Journal of Huazhong University of Science and Technology:Natural Science Edition, 2008, 36(7):73-76.
[16] 李文龙.复杂曲面零件数据拼合与精密加工技术研究[D].武汉:华中科技大学,2010. LI Wen-long. Research on the data registration and precision machining technologies towards complex surfaces[D]. Wuhan:Huazhong University of Science and Technology, 2010.
[17] PRESS W H, TEUKOLSKY S A, VWTTERLING W T, et al. Numerical recipes in C:the art of scientific computing[M]. 2nd ed. Cambridge:Cambridge University Press, 1992.
[18] 薛耀红,梁学章,马婷,等.扫描点云的一种自动配准方法[J].计算机辅助设计与图形学学报,2011, 23(2):223-231. XUE Yao-hong, LIANG Xue-zhang, MA Ting, et al. An automatic registration method of scanned point clouds[J]. Journal of Computer-Aided Design and Computer Graphics, 2011, 23(2):223-231.

[1] HAN Yong, NING Lian-ju, ZHENG Xiao-lin, LIN Wei-hua, SUN Zhong-yuan. Matrix factorization recommendation based on social information and item exposure[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2019, 53(1): 89-98.
[2] ZHENG Zhou, ZHANG Xue-chang, ZHENG Si-ming, SHI Yue-ding. Liver segmentation in CT images based on region-growing and unified level set method[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(12): 2382-2396.
[3] ZHAO Li-ke, ZHENG Shun-yi, WANG Xiao-nan, HUANG Xia. Rigid object position and orientation measurement based on monocular sequence[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(12): 2372-2381.
[4] HE Jie-guang, PENG Zhi-ping, CUI De-long, LI Qi-rui. Teaching-learning-based optimization algorithm with local dimension improvement[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(11): 2159-2170.
[5] LI Zhi, SHAN Hong, MA Tao, HUANG Jun. Group discovery of mobile terminal users based on reverse-label propagation algorithm[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(11): 2171-2179.
[6] WANG Shuo-peng, YANG Peng, SUN Hao. Construction process optimization of fingerprint database for auditory localization[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(10): 1973-1979.
[7] WEI Xiao-feng, CHENG Cheng-qi, CHEN Bo, WANG Hai-yan. Chain code based on independent edge number[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(9): 1686-1693.
[8] CHEN Rong-hua, WANG Ying-han, BU Jia-jun, YU Zhi, GAO Fei. Website accessibility sampling evaluation based on KNN and local regression[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(9): 1702-1708.
[9] ZHANG Cheng-zhi, FENG Hua-jun, XU Zhi-hai, LI Qi, CHEN Yue-ting. Piecewise noise variance estimation of images based on wavelet transform[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(9): 1804-1810.
[10] LIU Zhou-zhou, LI Shi-ning, LI Bin, WANG Hao, ZHANG Qian-yun, ZHENG Ran. New elastic collision optimization algorithm and its application in sensor cloud resource scheduling[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(8): 1431-1443.
[11] WANG Yong-chao, ZHU Kai-lin, WU Qi-xuan, LU Dong-ming. Adaptive display technology of high precision model based on local rendering[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(8): 1461-1466.
[12] SUN Nian, LI Yu-qiang, LIU Ai-hua, LIU Chun, LI Wei-wei. Microblog sentiment analysis based on collaborative learning under loose conditions[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(8): 1452-1460.
[13] ZHENG Shou-guo, CUI Yan-min, WANG Qing, YANG Fei, CHENG Liang. Design of field data acquisition platform for aircraft assembly[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(8): 1526-1534.
[14] BI Xiao-jun, WANG Chao. Many-objective evolutionary algorithm based on hyperplane projection[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(7): 1284-1293.
[15] ZHANG Ting-rong, TENG Qi-zhi, LI Zheng-ji, QING Lin-bo, HE Xiao-hai. Super-resolution reconstruction for three-dimensional core CT image[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(7): 1294-1301.