|
|
Operating optimization of oxidation subsystem of wet flue gas desulfurization system of 1 000 MW coal-fired unit |
Hai-dong FAN1,2( ),Zhu CHEN1,Zhong-yang ZHAO1,Cheng-si LIANG4,Cheng-hang ZHENG1,3,*( ),Xiang GAO1,3 |
1. State Environmental Protection Center for Coal-Fired Air Pollution Control, Zhejiang University, Hangzhou 310027, China 2. Baima Lake Laboratory, Hangzhou 310056, China 3. Jiaxing Research Institute, Zhejiang University, Jiaxing 314031, China 4. Zhejiang Zheneng Technology Research Institute Limited Company, Hangzhou 311121, China |
|
|
Abstract A model of the oxidation process in the wet flue gas desulfurization (WFGD) based on the mechanism of forced oxidation and natural oxidation process was established aiming at the problems of excessive oxidation air and high energy consumption of oxidation system under variable load and SO2 mass concentration operation existing in the application of limestone-gypsum WFGD technology. The influence of key parameters such as the O2 volume fraction in the flue gas, the diameter of bubbles or droplets and reaction enhancement factor on forced oxidation rate and natural oxidation rate was analyzed. A real-time operation optimization method of oxidation system based on the above-mentioned oxidation process model was proposed, and an industrial test was conducted on a 1 000 MW desulfurization unit. Results showed that the root-mean-square error (RMSE) of the variation of sulfur was less than 0.15 mol/m3. The natural oxidation rate fluctuated between 10% and 35% and the demand for oxidizing air fluctuated between 107 m3/min and 360 m3/min with the unit load fluctuating between 520 MW and 1 000 MW. The real-time operating optimization method of the oxidation subsystem can reduce the energy consumption by 23.7% compared with operating at rated power under the premise of enough oxidation rate of the WFGD system.
|
Received: 06 April 2022
Published: 21 April 2023
|
|
Fund: 国家重点研发计划资助项目(2020YFB0606203-4) |
Corresponding Authors:
Cheng-hang ZHENG
E-mail: fan_haidong@163.com;zhengch2003@zju.edu.cn
|
1 000 MW燃煤机组湿法脱硫装置氧化系统运行优化
针对石灰石-石膏湿法烟气脱硫技术应用过程中存在的变负荷变SO2质量浓度条件下氧化风过量、氧化系统运行能耗高的问题,建立基于强制氧化和自然氧化过程机理的脱硫装置氧化过程模型,分析烟气中O2体积分数、气泡直径、液滴粒径、反应增强因子等关键参数对强制氧化率和自然氧化率的影响规律. 提出基于脱硫装置氧化过程模型的氧化系统实时运行优化方法,在1 000 MW机组脱硫装置上开展工业验证研究. 结果表明,模型计算的四价硫变化量均方根误差不超过0.15 mol/m3. 随着机组负荷在520 MW到1 000 MW之间变化,自然氧化率为10%~35%,氧化风需求量为107~360 m3/min. 相比于按额定功率运行,氧化系统实时运行优化方法能够在保证脱硫装置氧化率的前提下降低23.7%的能耗.
关键词:
石灰石-石膏湿法烟气脱硫,
自然氧化率,
强制氧化率,
氧化系统运行优化,
节能降耗
|
|
[1] |
国家发展和改革委员会国家能源局. 电力发展“十四五”规划(2021——2025)年[R]. 北京: 国家发展和改革委员会能源局, 2021. National Energy Administration of National Development and Reform Commission. "14th Five-Year Plan" for Electric Power Development (2021-2025) [R]. Beijing: National Energy Administration of National Development and Reform Commission, 2021.
|
|
|
[2] |
郦建国, 朱法华, 孙雪丽 中国火电大气污染防治现状及挑战[J]. 中国电力, 2018, 51 (6): 2- 10 LI Jian-guo, ZHU Fa-hua, SUN Xue-li Current situation and challenges of air pollution prevention and control from thermal power in China[J]. China Electric Power, 2018, 51 (6): 2- 10
|
|
|
[3] |
杨用龙, 苏秋凤, 张杨, 等 双塔双循环脱硫系统优化与经济性运行研究[J]. 中国电力, 2018, 51 (4): 136- 142 YANG Yong-long, SU Qiu-feng, ZHANG Yang, et al Research on optimization and economical operation of double-tower double-cycle desulfurization system[J]. China Electric Power, 2018, 51 (4): 136- 142
|
|
|
[4] |
SUN R. Optimized operation analysis of double-tower double-circulation desulfurization system in a high-sulfur coal-fired power plant [C]// Proceedings of the 2019 IEEE 3rd International Conference on Green Energy and Applications. Taiyuan: IEEE, 2019.
|
|
|
[5] |
XU G, YANG Y, WANG N, et al. Analysis on energy consumption and optimal operation of FGD system in power plant [C]// Proceedings of the 2010 Asia-Pacific Power and Energy Engineering Conference. Chengdu: IEEE, 2010.
|
|
|
[6] |
李文鼎, 高惠华, 蔡文丰 石灰石–石膏湿法脱硫吸收塔结垢分析及预防措施[J]. 发电技术, 2019, 40 (1): 51- 55 LI Wen-ding, GAO Hui-hua, CAI Wen-feng Scaling analysis and preventive measures of limestone-gypsum wet desulfurization absorption tower[J]. Power Generation Technology, 2019, 40 (1): 51- 55
doi: 10.12096/j.2096-4528.pgt.18069
|
|
|
[7] |
张鑫博. 脱硫循环浆液中亚硫酸钙的氧化控制研究[D]. 济南: 山东大学, 2020. ZHANG Xin-bo. Oxidation control of calcium sulfite in desulfurization circulating slurry [D]. Jinan: Shandong University, 2020.
|
|
|
[8] |
朱法华, 王临清 煤电超低排放的技术经济与环境效益分析[J]. 环境保护, 2014, 42 (21): 28- 33 ZHU Fa-hua, WANG Lin-qing Technical, economic and environmental benefit analysis of ultra-low emissions from coal power[J]. Environmental Protection, 2014, 42 (21): 28- 33
doi: 10.14026/j.cnki.0253-9705.2014.21.004
|
|
|
[9] |
WARYCH J, SZYMANOWSKI M Optimum values of process parameters of the "wet limestone flue gas desulfurization system"[J]. Chemical Engineering and Technology, 2015, 25 (4): 427- 432
|
|
|
[10] |
REN R, SHI F, JIANG D, et al. Dynamical process and mass transfer of the wet-limestone flue gas desulfurization [C]// Proceedings of the 2011 International Conference on Remote Sensing, Environment and Transportation Engineering. Nanjing: IEEE, 2011.
|
|
|
[11] |
ZHAO Y, GUO T, ZHANG Z, et al. Wet flue gas desulfurization using a physical mixture of limestone and lime for energy savings [C]// Proceedings of the 2011 International Symposium on Water Resource and Environmental Protection. Xi'an: IEEE, 2011.
|
|
|
[12] |
LIU Q, LI X, WANG K, et al. CPS-based slurry pH control in wet flue gas desulfurization system [C]// Proceedings of the 2020 Chinese Control And Decision Conference. Hefei: IEEE, 2020.
|
|
|
[13] |
赵林林 350MW机组脱硫氧化风机节能优化试验[J]. 华电技术, 2019, 41 (9): 45- 48 ZHAO Lin-lin Energy saving optimization test of desulfurization and oxidation fan of 350MW unit[J]. Integrated Intelligent Energy, 2019, 41 (9): 45- 48
|
|
|
[14] |
谷小兵, 李建, 宁翔, 等 脱硫系统罗茨氧化风机的节能优化[J]. 节能技术, 2021, 39 (6): 570- 574 GU Xiao-bing, LI Jian, NING Xiang, et al Energy saving optimization of Roots oxidation fan in desulfurization system[J]. Energy Saving Technology, 2021, 39 (6): 570- 574
doi: 10.3969/j.issn.1002-6339.2021.06.019
|
|
|
[15] |
JERZY W, MAREK S Model of the wet limestone flue gas desulfurization process for cost optimization[J]. Industrial and Engineering Chemistry Research, 2001, 40 (12): 2597- 2605
doi: 10.1021/ie0005708
|
|
|
[16] |
KAKARANIYA S, KARI C, VERMA R, et al Gas absorption in slurries of fine particles: SO2-Mg(OH)(2)-MgSO3 system [J]. Industrial and Engineering Chemistry Research, 2007, 46 (7): 1904- 1913
doi: 10.1021/ie061461h
|
|
|
[17] |
林永明. 大型石灰石-石膏湿法喷淋脱硫技术研究及工程应用[D]. 杭州: 浙江大学, 2006. LIN Yong-ming. Research and engineering application of large limestone-gypsum wet spray desulfurization technology [D]. Hangzhou: Zhejiang University, 2006.
|
|
|
[18] |
LEE M Fick's law, Green-Kubo formula, and Heisenberg's equation of motion[J]. Physical Review Letters, 2000, 85 (12): 2422
doi: 10.1103/PhysRevLett.85.2422
|
|
|
[19] |
FULLER E, SCHETTLER P, GIDDINGS J New method for prediction of binary gas-phase diffusion coefficients[J]. Industrial and Engineering Chemistry, 1966, 58 (5): 18- 27
doi: 10.1021/ie50677a007
|
|
|
[20] |
LAWSON J, BODENSCHATZ E, KNUTSEN A, et al Direct assessment of Kolmogorov's first refined similarity hypothesis[J]. Physical Review Fluids, 2019, 4 (2): 022601
doi: 10.1103/PhysRevFluids.4.022601
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|