Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (4): 675-682    DOI: 10.3785/j.issn.1008-973X.2023.04.004
    
Operating optimization of oxidation subsystem of wet flue gas desulfurization system of 1 000 MW coal-fired unit
Hai-dong FAN1,2(),Zhu CHEN1,Zhong-yang ZHAO1,Cheng-si LIANG4,Cheng-hang ZHENG1,3,*(),Xiang GAO1,3
1. State Environmental Protection Center for Coal-Fired Air Pollution Control, Zhejiang University, Hangzhou 310027, China
2. Baima Lake Laboratory, Hangzhou 310056, China
3. Jiaxing Research Institute, Zhejiang University, Jiaxing 314031, China
4. Zhejiang Zheneng Technology Research Institute Limited Company, Hangzhou 311121, China
Download: HTML     PDF(1594KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A model of the oxidation process in the wet flue gas desulfurization (WFGD) based on the mechanism of forced oxidation and natural oxidation process was established aiming at the problems of excessive oxidation air and high energy consumption of oxidation system under variable load and SO2 mass concentration operation existing in the application of limestone-gypsum WFGD technology. The influence of key parameters such as the O2 volume fraction in the flue gas, the diameter of bubbles or droplets and reaction enhancement factor on forced oxidation rate and natural oxidation rate was analyzed. A real-time operation optimization method of oxidation system based on the above-mentioned oxidation process model was proposed, and an industrial test was conducted on a 1 000 MW desulfurization unit. Results showed that the root-mean-square error (RMSE) of the variation of sulfur was less than 0.15 mol/m3. The natural oxidation rate fluctuated between 10% and 35% and the demand for oxidizing air fluctuated between 107 m3/min and 360 m3/min with the unit load fluctuating between 520 MW and 1 000 MW. The real-time operating optimization method of the oxidation subsystem can reduce the energy consumption by 23.7% compared with operating at rated power under the premise of enough oxidation rate of the WFGD system.



Key wordswet limestone-gypsum flue gas desulfurization      natural oxidation rate      forced oxidation rate      oxidation system operation optimization      energy saving and consumption reduction     
Received: 06 April 2022      Published: 21 April 2023
CLC:  X 511  
Fund:  国家重点研发计划资助项目(2020YFB0606203-4)
Corresponding Authors: Cheng-hang ZHENG     E-mail: fan_haidong@163.com;zhengch2003@zju.edu.cn
Cite this article:

Hai-dong FAN,Zhu CHEN,Zhong-yang ZHAO,Cheng-si LIANG,Cheng-hang ZHENG,Xiang GAO. Operating optimization of oxidation subsystem of wet flue gas desulfurization system of 1 000 MW coal-fired unit. Journal of ZheJiang University (Engineering Science), 2023, 57(4): 675-682.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.04.004     OR     https://www.zjujournals.com/eng/Y2023/V57/I4/675


1 000 MW燃煤机组湿法脱硫装置氧化系统运行优化

针对石灰石-石膏湿法烟气脱硫技术应用过程中存在的变负荷变SO2质量浓度条件下氧化风过量、氧化系统运行能耗高的问题,建立基于强制氧化和自然氧化过程机理的脱硫装置氧化过程模型,分析烟气中O2体积分数、气泡直径、液滴粒径、反应增强因子等关键参数对强制氧化率和自然氧化率的影响规律. 提出基于脱硫装置氧化过程模型的氧化系统实时运行优化方法,在1 000 MW机组脱硫装置上开展工业验证研究. 结果表明,模型计算的四价硫变化量均方根误差不超过0.15 mol/m3. 随着机组负荷在520 MW到1 000 MW之间变化,自然氧化率为10%~35%,氧化风需求量为107~360 m3/min. 相比于按额定功率运行,氧化系统实时运行优化方法能够在保证脱硫装置氧化率的前提下降低23.7%的能耗.


关键词: 石灰石-石膏湿法烟气脱硫,  自然氧化率,  强制氧化率,  氧化系统运行优化,  节能降耗 
Fig.1 Natural oxidation and forced oxidation in WFGD system
Fig.2 Comparison of sulfite concentration changes between measured and predicted values
Fig.3 Effects of important parameters on natural oxidation rate under different flue gas flow rate
Fig.4 Effects of important parameters on forced oxidation rate under different bubble diameter
Fig.5 Operating optimization method of oxidation system in WFGD system
Fig.6 Unit load and natural oxidation rate
Fig.7 Unit load and oxidizing air demand
运行策略 运行风机 fl,a/Hz fh,a/Hz Pa/kW rw/%
按额定频率 1号 76.0 76.0 225.0
按额定频率 2号 85.0 85.0 225.0
按运行经验 1号 64.8 75.3 216.3 4.3
按运行经验 2号 75.0 84.5 215.9 4.0
按优化方法 1号 23.7 70.0 167.4 25.6
按优化方法 2号 37.4 79.5 176.0 21.8
Tab.1 Analysis of energy consumption for different operating strategies of oxidation system
[1]   国家发展和改革委员会国家能源局. 电力发展“十四五”规划(2021——2025)年[R]. 北京: 国家发展和改革委员会能源局, 2021.
National Energy Administration of National Development and Reform Commission. "14th Five-Year Plan" for Electric Power Development (2021-2025) [R]. Beijing: National Energy Administration of National Development and Reform Commission, 2021.
[2]   郦建国, 朱法华, 孙雪丽 中国火电大气污染防治现状及挑战[J]. 中国电力, 2018, 51 (6): 2- 10
LI Jian-guo, ZHU Fa-hua, SUN Xue-li Current situation and challenges of air pollution prevention and control from thermal power in China[J]. China Electric Power, 2018, 51 (6): 2- 10
[3]   杨用龙, 苏秋凤, 张杨, 等 双塔双循环脱硫系统优化与经济性运行研究[J]. 中国电力, 2018, 51 (4): 136- 142
YANG Yong-long, SU Qiu-feng, ZHANG Yang, et al Research on optimization and economical operation of double-tower double-cycle desulfurization system[J]. China Electric Power, 2018, 51 (4): 136- 142
[4]   SUN R. Optimized operation analysis of double-tower double-circulation desulfurization system in a high-sulfur coal-fired power plant [C]// Proceedings of the 2019 IEEE 3rd International Conference on Green Energy and Applications. Taiyuan: IEEE, 2019.
[5]   XU G, YANG Y, WANG N, et al. Analysis on energy consumption and optimal operation of FGD system in power plant [C]// Proceedings of the 2010 Asia-Pacific Power and Energy Engineering Conference. Chengdu: IEEE, 2010.
[6]   李文鼎, 高惠华, 蔡文丰 石灰石–石膏湿法脱硫吸收塔结垢分析及预防措施[J]. 发电技术, 2019, 40 (1): 51- 55
LI Wen-ding, GAO Hui-hua, CAI Wen-feng Scaling analysis and preventive measures of limestone-gypsum wet desulfurization absorption tower[J]. Power Generation Technology, 2019, 40 (1): 51- 55
doi: 10.12096/j.2096-4528.pgt.18069
[7]   张鑫博. 脱硫循环浆液中亚硫酸钙的氧化控制研究[D]. 济南: 山东大学, 2020.
ZHANG Xin-bo. Oxidation control of calcium sulfite in desulfurization circulating slurry [D]. Jinan: Shandong University, 2020.
[8]   朱法华, 王临清 煤电超低排放的技术经济与环境效益分析[J]. 环境保护, 2014, 42 (21): 28- 33
ZHU Fa-hua, WANG Lin-qing Technical, economic and environmental benefit analysis of ultra-low emissions from coal power[J]. Environmental Protection, 2014, 42 (21): 28- 33
doi: 10.14026/j.cnki.0253-9705.2014.21.004
[9]   WARYCH J, SZYMANOWSKI M Optimum values of process parameters of the "wet limestone flue gas desulfurization system"[J]. Chemical Engineering and Technology, 2015, 25 (4): 427- 432
[10]   REN R, SHI F, JIANG D, et al. Dynamical process and mass transfer of the wet-limestone flue gas desulfurization [C]// Proceedings of the 2011 International Conference on Remote Sensing, Environment and Transportation Engineering. Nanjing: IEEE, 2011.
[11]   ZHAO Y, GUO T, ZHANG Z, et al. Wet flue gas desulfurization using a physical mixture of limestone and lime for energy savings [C]// Proceedings of the 2011 International Symposium on Water Resource and Environmental Protection. Xi'an: IEEE, 2011.
[12]   LIU Q, LI X, WANG K, et al. CPS-based slurry pH control in wet flue gas desulfurization system [C]// Proceedings of the 2020 Chinese Control And Decision Conference. Hefei: IEEE, 2020.
[13]   赵林林 350MW机组脱硫氧化风机节能优化试验[J]. 华电技术, 2019, 41 (9): 45- 48
ZHAO Lin-lin Energy saving optimization test of desulfurization and oxidation fan of 350MW unit[J]. Integrated Intelligent Energy, 2019, 41 (9): 45- 48
[14]   谷小兵, 李建, 宁翔, 等 脱硫系统罗茨氧化风机的节能优化[J]. 节能技术, 2021, 39 (6): 570- 574
GU Xiao-bing, LI Jian, NING Xiang, et al Energy saving optimization of Roots oxidation fan in desulfurization system[J]. Energy Saving Technology, 2021, 39 (6): 570- 574
doi: 10.3969/j.issn.1002-6339.2021.06.019
[15]   JERZY W, MAREK S Model of the wet limestone flue gas desulfurization process for cost optimization[J]. Industrial and Engineering Chemistry Research, 2001, 40 (12): 2597- 2605
doi: 10.1021/ie0005708
[16]   KAKARANIYA S, KARI C, VERMA R, et al Gas absorption in slurries of fine particles: SO2-Mg(OH)(2)-MgSO3 system [J]. Industrial and Engineering Chemistry Research, 2007, 46 (7): 1904- 1913
doi: 10.1021/ie061461h
[17]   林永明. 大型石灰石-石膏湿法喷淋脱硫技术研究及工程应用[D]. 杭州: 浙江大学, 2006.
LIN Yong-ming. Research and engineering application of large limestone-gypsum wet spray desulfurization technology [D]. Hangzhou: Zhejiang University, 2006.
[18]   LEE M Fick's law, Green-Kubo formula, and Heisenberg's equation of motion[J]. Physical Review Letters, 2000, 85 (12): 2422
doi: 10.1103/PhysRevLett.85.2422
[19]   FULLER E, SCHETTLER P, GIDDINGS J New method for prediction of binary gas-phase diffusion coefficients[J]. Industrial and Engineering Chemistry, 1966, 58 (5): 18- 27
doi: 10.1021/ie50677a007
[20]   LAWSON J, BODENSCHATZ E, KNUTSEN A, et al Direct assessment of Kolmogorov's first refined similarity hypothesis[J]. Physical Review Fluids, 2019, 4 (2): 022601
doi: 10.1103/PhysRevFluids.4.022601
[1] Er-hao GAO,Tian-yu SHOU,Bei HUANG,Wei WANG,Yao SHI. Relationship between morphology characteristics of CuCr2O4catalyst and its SCR denitrification activity[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1199-1205.
[2] Tao WANG,Hao DONG,Cheng-long HOU,Xin-ru WANG. Review of CO2 direct air capture adsorbents[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 462-475.
[3] Yan-fei WEI,Rong ZHOU,Min-jie ZHOU,Xiang GAO. Pilot study on combined denitration of SNCR-SCR system in cement furnace[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 1986-1992.
[4] Jun-ming WANG,Xing-ya ZHAO,Ling-hong CHEN,Li-xia HAN,Xiang GAO,Ke-fa CEN. Ammonia effect on optical properties of secondary organic aerosols[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1812-1818.
[5] Kang-wei LI,Fang YING,Ling-hong CHEN,Xian-jue ZHENG,Li-xia HAN,Xue-cheng WU,Xiang GAO,Ke-fa CEN. Ambient VOCs characteristics and associated effects in urban Hangzhou[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(4): 671-683.
[6] Lei-qing HU,Jun CHENG,Ya-li WANG,Jian-zhong LIU,Jun-hu ZHOU,Ke-fa CEN. Improvement on surface hydrophily of hollow fiber-supported PDMS gas separation membrane by PVP modification[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 228-233.
[7] Jun CHENG,Jian-feng LIU,Xi ZHANG,Ze ZHANG,Jiang-lei TIAN,Jun-hu ZHOU,Ke-fa CEN. Microalgae lipids extracted by hydrothermal method through deoxygenation and hydrocracking to produce jet fuel[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 214-219.
[8] CHEN Wen cong, HOU Yi wen, WU Jian, WANG Li hong. Characteristics of PM2.5 and VOCs emission from chemical fiber industry[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(1): 145-152.
[9] LI Qing yi, MENG Wei, WU Guo chao, ZHANG Jun, ZHU Song qiang, HU Da qing,ZHENG Cheng hang, GAO Xiang,WANG Ru neng, LIU Hai jiao. Evaluation on operation state and stability for denitrification of ultra low emission[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(12): 2303-2311.
[10] ZHU Yan qun, YANG Ye, HUANG Jian peng, LIN Fa wei, MA Qiang, XU Chao qun, WANG Zhi hua, CEN Ke fa. Removal of NOx by ozone oxidation from flue gas of 60000 m3/h carbon black drying furnace of rubber plant[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(10): 1865-1870.
[11] ZHANG Jun, LI Cun jie, ZHENG Cheng hang, WENG Wei guo, ZHU Song qiang, WANG Ding zhen, GAO Xiang, CEN Ke fa. Experimental of enhancement of simultaneous removing fine particle by sieve tray spray scrubber[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(8): 1516-1520.
[12] QIU Shan, CHEN Cong, DENG Feng xia, JI Ya wan, DING Xiao, MA Fang. Rhodamine B wastewater degradation by graphite graphite electro Fenton system[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(4): 704-713.
[13] ZHOU Bin, ZHOU Hao, WANG Jian yang, CEN Ke fa. characteristic of Shenhua coal ash blending with saw dust ash in O2/CO2 atmosphere[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(3): 468-476.
[14] ZHOU Xu ping, FANG Meng xiang, XIANG Qun yang, CAI Dan yun, WANG Tao, LUO Zhong yang. Characteristics of mass transfer in various aqueous amino acid salt solutions for CO2 capture[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(2): 312-319.
[15] SONG Zu wei, ZHONG Zhao ping, ZHANG Bo, Lv Zi ting, DING Kuan. Experimental study on catalytic co pyrolysis of corn stalk and polypropylene[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(2): 333-340.