Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2026, Vol. 60 Issue (3): 594-603    DOI: 10.3785/j.issn.1008-973X.2026.03.015
    
Lightweight detection model for typical environmental terrain target in Tibetan Plateau
Weiqun LUO1(),Jingwei LU1,Jiadi WU1,Yuying LIANG1,Chuanpeng SHEN1,Rui ZHU1,2,*()
1. College of Information Engineering, Xizang Minzu University, Xianyang 712082, China
2. School of Aerospace Engineering, Xiamen University, Xiamen 361102, China
Download: HTML     PDF(3893KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An obstacle detection model AO-YOLO was proposed in order to solve the problems of low accuracy and excessive calculation of obstacle recognition in traditional methods faced by general aviation aircraft in plateau mountain application scenarios. A multi-scale expanded attention mechanism was introduced by optimizing the existing YOLOv8n model in order to enhance the ability of Neck network to fuse features of different scales. HGBlock structure was used to replace the original Bottleneck module, and lightweight convolution was used to establish the feature hierarchical relationship, so that the network can extract local and global context information at the same time. The memory-efficient attention module and lightweight convolution module were combined to design a new detection head in in order to reduce the number of model parameters and computational cost. The experimental results showed that the mAP@0.5 index of AO-YOLO increased by 2.7% and the mAP@0.5:0.95 index increased by 2.0% on the constructed plateau mountain obstacle dataset (FOD) compared with YOLOv8n, and the overall calculation amount reduced by 24.7%. The proposed model has the characteristics of high accuracy and lightweight in the highland aviation obstacle detection task.



Key wordsplateau aviation      obstacle detection      lightweight YOLOv8n      multi-scale dilated attention      feature extraction     
Received: 30 January 2025      Published: 04 February 2026
CLC:  TP 183  
  TP 391  
Fund:  西藏自治区重点研发计划资助项目(XZ202401ZY0102,XZ202403ZY0019,XZ202402ZY0017);厦门市自然科学基金资助项目(3502Z20227179);教育部人文社会科学规划基金资助项目(23XZJAZH001);西藏自治区自然科学基金重点资助项目(XZ202401ZR0055);福建省自然科学基金资助项目(2022J01058);中国航空科学基金资助项目(2023Z032068001);水声对抗技术重点实验室基金资助项目(JCKY2024207CH05);西藏民族大学基金资助项目(Y2024050).
Corresponding Authors: Rui ZHU     E-mail: 1034228464@qq.com;zhurui@xmu.edu.cn
Cite this article:

Weiqun LUO,Jingwei LU,Jiadi WU,Yuying LIANG,Chuanpeng SHEN,Rui ZHU. Lightweight detection model for typical environmental terrain target in Tibetan Plateau. Journal of ZheJiang University (Engineering Science), 2026, 60(3): 594-603.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2026.03.015     OR     https://www.zjujournals.com/eng/Y2026/V60/I3/594


藏区高原典型环境地形目标的轻量化检测模型

为了解决通用航空飞行器在高原山区应用场景中,所面临的传统方法障碍物识别精度低和计算量过大等问题,提出障碍物检测模型AO-YOLO. 通过优化现有的YOLOv8n模型,引入多尺度扩张注意力机制,增强Neck网络对不同尺度特征的融合能力. 采用HGBlock结构替换原有的Bottleneck模块,通过轻量级卷积建立特征层次化关系,使网络能够同时提取局部与全局上下文信息. 结合内存高效的注意力模块与轻量级卷积模块,设计新的检测头,降低模型参数量与计算成本. 实验结果显示,在构建的高原山区障碍物数据集(FOD)上,相较于YOLOv8n,AO-YOLO的mAP@0.5指标提升了2.7%,mAP@0.5:0.95指标提升了2.0%,整体计算量减少了24.7%. 该模型在高原航空障碍物检测任务中具有精度较高和轻量化的特性.


关键词: 高原航空,  障碍物检测,  轻量化YOLOv8n,  多尺度扩张注意力,  特征提取 
Fig.1 Structure diagram of AO-YOLO network
Fig.2 Structure of C2f_MS module
Fig.3 Schematic of receptive field controlled by expansion rate
Fig.4 Structure diagram of PP-HGNetV2
Fig.5 Structure diagram of HGBlock module
Fig.6 Refactored backbone network structure
Fig.7 Structure of SADetect
参数数值
图像尺寸640×640
批大小8
最大训练轮数300
工作进程数4
优化器SGD(随机梯度下降)
初始学习率0.01
关闭马赛克增强的轮数10
Tab.1 Setting of training parameter
模型mAP@0.5/
%
mAP@0.5:0.95/
%
Np/
106
FLOPs/
109
Faster-RCNN73.840.741.2206.7
RetinaNet70.738.119.893.7
Cascade-RCNN71.439.2
YOLOv3-tiny69.837.912.119.1
YOLOv5n72.139.81.84.3
YOLOv5s73.841.37.015.8
YOLOv6n72.340.94.211.9
YOLOv8n72.941.83.08.1
cosSTR-YOLOv7[12]75.143.552.9263.5
YOLOv8-NDTiny [13]74.842.32.311.7
AO-YOLO75.643.82.46.1
Tab.2 Model comparison experiment conducted on FOD dataset
Fig.8 Precision-recall curve of YOLOv8n
Fig.9 Precision-recall curve of AO-YOLO
基线模型C2f_MSHGBlockSADetectmAP@0.5/%mAP@0.5:0.95/%Np/106FLOPs/109
???72.941.83.08.1
??75.342.53.38.8
??73.141.92.56.6
??74.242.32.67.0
?75.743.72.67.2
75.643.82.46.1
Tab.3 Ablation experiment of AO-YOLO model
Fig.10 Comparison of different attention mechanism
模型mAP@0.5/%FLOPs/109
Faster-RCNN33.1206.7
RetinaNet26.593.7
YOLOv3-tiny31.919.1
YOLOv5s32.415.8
YOLOv6n30.211.9
YOLOv8n33.58.1
cosSTR-YOLOv7[12]34.7263.5
YOLOv8-NDTiny [13]34.311.7
AO-YOLO35.06.1
Tab.4 Experimental result on VisDrone2019
模型mAP@0.5/%FLOPs/109
Faster-RCNN85.9206.7
RetinaNet83.693.7
YOLOv3-tiny86.519.1
YOLOv5s85.015.8
YOLOv6n85.211.9
YOLOv8n85.48.1
AO-YOLO86.66.1
Tab.5 Experimental result on NWPU VHR-10
Fig.11 Visual comparison of detection result
[1]   DALAL N, TRIGGS B. Histograms of oriented gradients for human detection [C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego: IEEE, 2005: 886–893.
[2]   GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014: 580–587.
[3]   GIRSHICK R. Fast R-CNN [C]//Proceedings of the IEEE International Conference on Computer Vision. Santiago: IEEE, 2016: 1440–1448.
[4]   REN S, HE K, GIRSHICK R, et al Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149
doi: 10.1109/TPAMI.2016.2577031
[5]   HE K, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN [C]//Proceedings of the IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2980–2988.
[6]   赵志宏, 郝子晔 改进YOLOv8的航拍小目标检测方法: CRP-YOLO[J]. 计算机工程与应用, 2024, 60 (13): 209- 218
ZHAO Zhihong, HAO Ziye Improved YOLOv8 aerial small target detection method: CRP-YOLO[J]. Computer Engineering and Applications, 2024, 60 (13): 209- 218
[7]   LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector [C]// 14th European Conference on Computer Vision. Cham: Springer, 2016: 21–37.
[8]   REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 779–788.
[9]   TANG S, ZHANG S, FANG Y. HIC-YOLOv5: improved YOLOv5 for small object detection [C]//Proceedings of the IEEE International Conference on Robotics and Automation. Yokohama: IEEE, 2024: 6614-6619.
[10]   YANG Y. Drone-view object detection based on the improved YOLOv5 [C]//Proceedings of the IEEE International Conference on Electrical Engineering, Big Data and Algorithms. Changchun: IEEE, 2022: 612–617.
[11]   韩俊, 袁小平, 王准, 等 基于YOLOv5s的无人机密集小目标检测算法[J]. 浙江大学学报: 工学版, 2023, 57 (6): 1224- 1233
HAN Jun, YUAN Xiaoping, WANG Zhun, et al UAV dense small target detection algorithm based on YOLOv5s[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (6): 1224- 1233
[12]   张徐, 朱正为, 郭玉英, 等 基于cosSTR-YOLOv7的多尺度遥感小目标检测[J]. 电光与控制, 2024, 31 (4): 28- 34
ZHANG Xu, ZHU Zhengwei, GUO Yuying, et al Multi-scale remote sensing small target detection based on cosSTR-YOLOv7[J]. Electronics Optics and Control, 2024, 31 (4): 28- 34
[13]   王燕妮, 张婧菲. 改进YOLOv8的无人机小目标检测算法 [J/OL]. 探测与控制学报, 2024, 46(6): 1–10. (2024-12-12). https://kns.cnki.net/KCMS/detail/detail.aspx?filename=XDYX20241211005&dbname=CJFD&dbcode=CJFQ.
WANG Yanni, ZHANG Jingfei. A modified YOLOv8 algorithm for UAV small object detection [J/OL]. Journal of Detection and Control, 2024, 46(6): 1–10. (2024-12-12). https://kns.cnki.net/KCMS/detail/detail.aspx?filename=XDYX20241211005&dbname=CJFD&dbcode=CJFQ.
[14]   WANG G, CHEN Y, AN P, et al UAV-YOLOv8: a small-object-detection model based on improved YOLOv8 for UAV aerial photography scenarios[J]. Sensors, 2023, 23 (16): 7190
doi: 10.3390/s23167190
[15]   李岩超, 史卫亚, 冯灿 面向无人机航拍小目标检测的轻量级YOLOv8检测算法[J]. 计算机工程与应用, 2024, 60 (17): 167- 178
LI Yanchao, SHI Weiya, FENG Can Lightweight YOLOv8 detection algorithm for small object detection in UAV aerial photography[J]. Computer Engineering and Applications, 2024, 60 (17): 167- 178
[16]   龙伍丹, 彭博, 胡节, 等 基于加强特征提取的道路病害检测算法[J]. 计算机应用, 2024, 44 (7): 2264- 2270
LONG Wudan, PENG Bo, HU Jie, et al Road damage detection algorithm based on enhanced feature extraction[J]. Journal of Computer Applications, 2024, 44 (7): 2264- 2270
[17]   JIAO J, TANG Y M, LIN K Y, et al DilateFormer: multi-scale dilated transformer for visual recognition[J]. IEEE Transactions on Multimedia, 2023, 25: 8906- 8919
doi: 10.1109/TMM.2023.3243616
[18]   徐佩, 陈亚江 融合Swin Transformer的YOLOv5口罩检测算法[J]. 智能计算机与应用, 2024, 14 (5): 83- 92
XU Pei, CHEN Yajiang Mask detection algorithm based on YOLOv5 integrating Swin Transformer[J]. Intelligent Computer and Applications, 2024, 14 (5): 83- 92
[19]   李登峰, 高明, 叶文韬 结合轻量级特征提取网络的舰船目标检测算法[J]. 计算机工程与应用, 2023, 59 (23): 211- 218
LI Dengfeng, GAO Ming, YE Wentao Ship target detection algorithm combined with lightweight feature extraction network[J]. Computer Engineering and Applications, 2023, 59 (23): 211- 218
[20]   YU H, WAN C, LIU M, et al. Real-time image segmentation via hybrid convolutional-transformer architecture search [EB/OL]. (2024-03-15). https://arxiv.org/abs/2403.10413.
[21]   徐光达, 毛国君 多层级特征融合的无人机航拍图像目标检测[J]. 计算机科学与探索, 2023, 17 (3): 635- 645
XU Guangda, MAO Guojun Aerial image object detection of UAV based on multi-level feature fusion[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17 (3): 635- 645
[22]   张洋, 夏英 多尺度特征融合的遥感图像目标检测方法[J]. 计算机科学, 2024, 51 (3): 165- 173
ZHANG Yang, XIA Ying Object detection method with multi-scale feature fusion for remote sensing images[J]. Computer Science, 2024, 51 (3): 165- 173
[23]   曹利, 徐慧英, 谢刚, 等. ASOD-YOLO: 基于YOLOv8n改进的航空小目标检测算法 [J/OL]. 计算机工程与科学, 2024, 46(9): 1–13. (2024-09-27). https://kns.cnki.net/KCMS/detail/detail.aspx?filename=JSJK20240906002&dbname=CJFD&dbcode=CJFQ.
CAO Li, XU Huiying, XIE Gang, et al. ASOD-YOLO: improved aviation small objection detection algorithm based on YOLOv8n [J/OL]. Computer Engineering and Science, 2024, 46(9): 1–13. (2024-09-27). https://kns.cnki.net/KCMS/detail/detail.aspx?filename=JSJK20240906002&dbname=CJFD&dbcode=CJFQ.
[24]   LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection [C]//Proceedings of the IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2999–3007.
[25]   CAI Z, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 6154–6162.
[26]   LI C, LI L, JIANG H, et al. YOLOv6: a single-stage object detection framework for industrial applications [EB/OL]. (2022-09-07). https://arxiv.org/abs/2209.02976
[27]   PAN X, GE C, LU R, et al. On the integration of self-attention and convolution [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 805–815.
[28]   YANG L, ZHANG R Y, LI L, et al. SimAM: a simple, parameter-free attention module for convolutional neural networks [C]//Proceedings of the International Conference on Machine Learning. Graz: ACM, 2021: 11863-11874.
[1] Zhuguo ZHOU,Yujun LU,Liye LV. Improved YOLOv5s-based algorithm for printed circuit board defect detection[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(8): 1608-1616.
[2] Jiarui FU,Zhaofei LI,Hao ZHOU,Wei HUANG. Camouflaged object detection based on Convnextv2 and texture-edge guidance[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(8): 1718-1726.
[3] Liming LIANG,Pengwei LONG,Jiaxin JIN,Renjie LI,Lu ZENG. Steel surface defect detection algorithm based on improved YOLOv8s[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(3): 512-522.
[4] Youping FU,Hang ZHANG,Menghan LI,Jun MENG. Identity recognition based on multi-dimensional features of pulse wave signals[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(3): 566-576.
[5] Jianghao CHEN,Jun YANG. Object detection for multi-source remote sensing fused images based on depthwise separable convolution[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(12): 2545-2555.
[6] Shuo YANG,Xu LOU,Shuo LIU,Jiarui LI,Lei WANG. Analysis of clinical difference in Parkinson’s disease subtype based on non-parametric brain network[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(11): 2451-2458.
[7] Junjie LIN,Yaguang ZHU,Chunchao LIU,Haoyang LIU. Digital twin system of legged robot for mobile operation[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(9): 1956-1969.
[8] Haijun WANG,Tao WANG,Cijun YU. CFRP ultrasonic detection defect identification method based on recursive quantitative analysis[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(8): 1604-1617.
[9] Kang HAN,Hongfei ZHAN,Junhe YU,Rui WANG. Rolling bearing fault diagnosis based on dilated convolution and enhanced multi-scale feature adaptive fusion[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(6): 1285-1295.
[10] Bo ZHONG,Pengfei WANG,Yiqiao WANG,Xiaoling WANG. Survey of deep learning based EEG data analysis technology[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(5): 879-890.
[11] Fanrui LUO,Zhenyu LIU,Jiahui REN,Xiaoyu LI,Yang CHENG. Lightweight LiDAR-IMU odometry based on improved Kalman filter[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(11): 2280-2289.
[12] Lin JIANG,Lin-rui LIU,An-na ZHOU,Lu HAN,Ping-yuan LI. Improved ORB-SLAM algorithm based on motion prediction[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(1): 170-177.
[13] Yan BIAN,Yu-sheng GONG,Guo-peng MA,Chang WANG. Water extraction from unmanned aerial vehicle remote sensing images[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 764-774.
[14] Ze-xin XU,Li-juan DUAN,Wen-jian WANG,Qing EN. Code vulnerability detection method based on contextual feature fusion[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(11): 2260-2270.
[15] Fang LIU,Zhen WANG,Rui-di LIU,Kai WANG. Short-term forecasting method of wind power generation based on BP neural network with combined loss function[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 594-600.