Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (11): 2451-2458    DOI: 10.3785/j.issn.1008-973X.2025.11.024
    
Analysis of clinical difference in Parkinson’s disease subtype based on non-parametric brain network
Shuo YANG1,2,3(),Xu LOU1,3,Shuo LIU1,3,Jiarui LI1,3,Lei WANG1,2,3,*()
1. School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China
2. State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China
3. Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin 300130, China
Download: HTML     PDF(1057KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The resting-state EEG and brain network characteristics of different Parkinson’s disease subtypes were analyzed using a non-parametric approach. Non-parametric brain networks were computed from wavelet-based Granger causality within θ, individualized α (IAF), and β bands. Leverage centrality and efficiency density were computed and discussed in relation to clinical manifestations. The postural-instability and gait-difficulty (PIGD) subtype exhibited elevated leverage centrality in frontal and occipital cortices, signifying enhanced information-processing efficiency. Network efficiency within the IAF band was significantly negatively correlated with psychiatric and behavioral manifestations in the PIGD subtype. The tremor-dominant (TD) subtype exhibited higher efficiency density than the PIGD subtype across all frequency bands. Leverage centrality was significantly positively correlated with activities of daily living within the β band. The indeterminate (IT) subtype showed no significant differences in leverage centrality or efficiency density across brain regions and frequency bands, indicating relatively high consistency. The observed clinical heterogeneity across Parkinson’s disease subtypes is closely associated with aberrant individualized EEG signature and abnormal brain network activity.



Key wordsbrain network      EEG      feature extraction      leverage centrality      Parkinson's disease subtype     
Received: 12 February 2025      Published: 30 October 2025
CLC:  R 318  
Fund:  国家自然科学基金资助项目(52320105008,51877067);河北省重点研发计划资助项目(21372002D).
Corresponding Authors: Lei WANG     E-mail: sureyang@126.com;wanglei@hebut.edu.cn
Cite this article:

Shuo YANG,Xu LOU,Shuo LIU,Jiarui LI,Lei WANG. Analysis of clinical difference in Parkinson’s disease subtype based on non-parametric brain network. Journal of ZheJiang University (Engineering Science), 2025, 59(11): 2451-2458.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.11.024     OR     https://www.zjujournals.com/eng/Y2025/V59/I11/2451


基于非参数脑网络的帕金森亚型临床差异分析

通过非参数方法分析帕金森病不同亚型患者的静息态脑电的脑网络特征. 基于θ、个体化α(IAF)以及β频段的小波变换格兰杰因果构建非参数脑网络,提取杠杆中心性和效率密度,探讨其与临床表现的关联. 研究发现,姿势不稳和步态困难型(PIGD)在额叶和枕叶的杠杆中心性较高,体现出显著的信息处理优势;PIGD亚型在IAF频段的网络性能与精神和行为表现呈显著负相关. 震颤主导型(TD)的效率密度在全频段优于PIGD亚型,且在β频段,杠杆中心性与日常生活能力显著正相关. 不确定型(IT)在不同脑区和频段间的杠杆中心性和效率密度无明显差异,表现出较高的一致性. 结果表明,不同帕金森病亚型的临床表现差异与个体化脑电特征及脑网络活动的异常密切相关.


关键词: 脑网络,  脑电图,  特征提取,  杠杆中心性,  帕金森亚型 
亚型年龄受教育年龄Q
UPDRS-ⅠUPDRS-ⅡUPDRS-ⅢUPDRS-ⅣMMSEMoCA
TD64.20±4.5412.40±2.442.60±1.586.50±3.7818.20±11.944.10±2.0427.40±3.7524.30±7.54
PIGD65.60±4.0413.00±2.832.38±1.839.19±4.6918.81±13.285.00±3.3228.90±1.6427.43±2.11
IT63.38±3.9711.69±2.253.00±2.605.50±4.9312.57±7.483.86±3.1828.79±1.3727.43±2.78
p0.440.490.900.030.400.510.660.84
Tab.1 Clinical scale for patient with different Parkinson's disease subtype
Fig.1 Resting-state EEG power spectra and individualized alpha peak frequency in different Parkinson’s disease subtype
Fig.2 Quality index
Fig.3 Efficiency density difference among Parkinson’s disease subtypes at different frequency bands
Fig.4 Leverage centrality difference in different brain regions and frequency bands among Parkinson’s disease subtypes
Fig.5 Correlation between clinical scales and brain network characteristics
[1]   CHE N, OU R, LI C, et al Plasma GFAP as a prognostic biomarker of motor subtype in early Parkinson’s disease[J]. npj Parkinson's Disease, 2024, 10 (1): 48- 56
doi: 10.1038/s41531-024-00664-8
[2]   WVLLNER U, BORGHAMMER P, CHOE C, et al The heterogeneity of Parkinson’s disease[J]. Journal of Neural Transmission, 2023, 130 (6): 827- 838
doi: 10.1007/s00702-023-02635-4
[3]   BASAIA S, AGOSTA F, FRANCIA A, et al Cerebro-cerebellar motor networks in clinical subtypes of Parkinson’s disease[J]. npj Parkinson's Disease, 2022, 8 (1): 113- 123
doi: 10.1038/s41531-022-00377-w
[4]   DULSKI J, UITTI R J, BEASLEY A, et al Genetics of Parkinson's disease heterogeneity: a genome-wide association study of clinical subtypes[J]. Parkinsonism and Related Disorders, 2024, 119: 105935
doi: 10.1016/j.parkreldis.2023.105935
[5]   LI Y, ZENG Y, LIN M, et al β oscillations of dorsal STN as a potential biomarker in Parkinson’s disease motor subtypes: an exploratory study[J]. Brain Sciences, 2023, 13 (5): 737- 749
doi: 10.3390/brainsci13050737
[6]   GU S C, SHI R, GAO C, et al Autonomic function and motor subtypes in Parkinson’s disease: a multicentre cross-sectional study[J]. Scientific Reports, 2023, 13 (1): 14548
doi: 10.1038/s41598-023-41662-9
[7]   MARRAS C, CHAUDHURI K R, TITOVA N, et al Therapy of Parkinson’s disease subtypes[J]. Neurotherapeutics, 2020, 17 (4): 1366- 1377
doi: 10.1007/s13311-020-00894-7
[8]   CHU H Y, SMITH Y, LYTTON W W, et al Dysfunction of motor cortices in Parkinson’s disease[J]. Cerebral Cortex, 2024, 34 (7): bhae294
doi: 10.1093/cercor/bhae294
[9]   LING S, MURPHY A, FYSHE A Exploring temporal sensitivity in the brain using multi-timescale language models: an EEG decoding study[J]. Computational Linguistics, 2024, 50 (4): 1477- 1506
doi: 10.1162/coli_a_00533
[10]   李明, 段立娟, 王文健, 等 基于显著稀疏强关联的脑功能连接分类方法[J]. 浙江大学学报: 工学版, 2022, 56 (11): 2232- 2240
LI Ming, DUAN Lijuan, WANG Wenjian, et al Brain functional connections classification method based on significant sparse strong correlation[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (11): 2232- 2240
[11]   ALJALAL M, ALDOSARI S A, MOLINAS M, et al Detection of Parkinson’s disease from EEG signals using discrete wavelet transform, different entropy measures, and machine learning techniques[J]. Scientific Reports, 2022, 12 (1): 22547
doi: 10.1038/s41598-022-26644-7
[12]   YANG X, LI Z, BAI L, et al Association of plasma and electroencephalography markers with motor subtypes of Parkinson’s disease[J]. Frontiers in Aging Neuroscience, 2022, 14: 911221
doi: 10.3389/fnagi.2022.911221
[13]   ORCIOLI-SILVA D, VITÓRIO R, BERETTA V S, et al Is cortical activation during walking different between Parkinson’s disease motor subtypes?[J]. The Journals of Gerontology: Series A, 2021, 76 (4): 561- 567
doi: 10.1093/gerona/glaa174
[14]   BANGE M, GONZALEZ E G, HERZ D M, et al Subthalamic stimulation modulates context-dependent effects of beta bursts during fine motor control[J]. Nature Communications, 2024, 15 (1): 3166- 3181
doi: 10.1038/s41467-024-47555-3
[15]   MUKHTAR R, CHANG C Y, RAJA M A Z, et al Novel nonlinear fractional order Parkinson's disease model for brain electrical activity rhythms: Intelligent adaptive Bayesian networks[J]. Chaos, Solitons and Fractals, 2024, 180: 114557
doi: 10.1016/j.chaos.2024.114557
[16]   YI C, QIU Y, CHEN W, et al Constructing time-varying directed EEG network by multivariate nonparametric dynamical Granger causality[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30: 1412- 1421
doi: 10.1109/TNSRE.2022.3175483
[17]   WOLTERS A F, MICHIELSE S, KUIJF M L, et al Brain network characteristics and cognitive performance in motor subtypes of Parkinson's disease: a resting state fMRI study[J]. Parkinsonism and Related Disorders, 2022, 105 (10): 32- 38
[18]   CECCHETTI G, AGOSTA F, CANU E, et al Analysis of individual alpha frequency in a large cohort from a tertiary memory center[J]. European Journal of Neurology, 2024, 31 (10): e16424
doi: 10.1111/ene.16424
[19]   MURPHY M, CARRIÓN R E, RUBIO J, et al Peak alpha frequency and electroencephalographic microstates are correlated with aggression in schizophrenia[J]. Journal of Psychiatric Research, 2024, 175: 60- 67
doi: 10.1016/j.jpsychires.2024.04.051
[20]   NG A S L, TAN Y J, YONG A C W, et al Utility of plasma neurofilament light as a diagnostic and prognostic biomarker of the postural instability gait disorder motor subtype in early Parkinson’s disease[J]. Molecular Neurodegeneration, 2020, 15: 1- 8
doi: 10.1186/s13024-019-0350-4
[21]   ZHANG W, LING Y, CHEN Z, et al Wearable sensor-based quantitative gait analysis in Parkinson’s disease patients with different motor subtypes[J]. npj Digital Medicine, 2024, 7 (1): 169- 183
doi: 10.1038/s41746-024-01163-z
[22]   闫佳庆, 李丹, 邓金钊, 等 不同难度任务下自我调节机制对心理负荷水平的影响[J]. 电子与信息学报, 2023, 45 (8): 2780- 2787
YAN Jiaqing, LI Dan, DENG Jinzhao, et al Impact of self-regulation on mental workload under different difficulty tasks[J]. Journal of Electronics and Information Technology, 2023, 45 (8): 2780- 2787
doi: 10.11999/JEIT221260
[23]   MOKHTARINEJAD E, TAVAKOLI M, GHADERI A H Exploring the correlation and causation between α oscillations and one-second time perception through EEG and tACS[J]. Scientific Reports, 2024, 14 (1): 8035
doi: 10.1038/s41598-024-57715-6
[24]   FALLANI F D V, LATORA V, CHAVEZ M A topological criterion for filtering information in complex brain networks[J]. PLoS Computational Biology, 2017, 13 (1): 1- 18
[25]   SAAD J F, GRIFFITHS K R, KORGAONKAR M S A systematic review of imaging studies in the combined and inattentive subtypes of attention deficit hyperactivity disorder[J]. Frontiers in Integrative Neuroscience, 2020, 14: 1- 14
doi: 10.3389/fnint.2020.00001
[26]   李昕, 张晴, 张莹, 等 基于脑电图的帕金森轻度认知障碍功能网络特征分析[J]. 计量学报, 2024, 45 (1): 135- 144
LI Xin, ZHANG Qing, ZHANG Ying, et al Functional network characterization analysis of Parkinson’s mild cognitive impairment based on EEG[J]. Acta Metrologica Sinice, 2024, 45 (1): 135- 144
[27]   VISSANI M, PALMISANO C, VOLKMANN J, et al Impaired reach-to-grasp kinematics in parkinsonian patients relates to dopamine-dependent, subthalamic beta bursts[J]. npj Parkinson’s Disease, 2021, 7 (1): 53
doi: 10.1038/s41531-021-00187-6
[28]   ZHANG Y, ZHANG Z, DU F, et al Shared oscillatory mechanisms of alpha-band activity in prefrontal regions in eyes open and closed state using a portable EEG acquisition device[J]. Scientific Reports, 2024, 14 (1): 26719
doi: 10.1038/s41598-024-78173-0
[29]   GASSMANN L, GORDON P C, ZIEMANN U Assessing effective connectivity of the cerebellum with cerebral cortex using TMS-EEG[J]. Brain Stimulation, 2022, 15 (6): 1354- 1369
doi: 10.1016/j.brs.2022.09.013
[30]   FETTERHOFF D, COSTA M, HELLERSTEDT R, et al. Neuronal population representation of human emotional memory [EB/OL]. [2025-02-01]. https://www.cell.com/cell-reports/fulltext/S2211-1247(24)00399-1?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS2211124724003991%3Fshowall%3Dtrue.
[1] Wenxin CHENG,Guanghui YAN,Wenwen CHANG,Baijing WU,Yaning HUANG. Channel-weighted multimodal feature fusion for EEG-based fatigue driving detection[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(9): 1775-1783.
[2] Xuan MENG,Xueying ZHANG,Ying SUN,Yaru ZHOU. EEG emotion recognition based on electrode arrangement and Transformer[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(9): 1872-1880.
[3] Jiarui FU,Zhaofei LI,Hao ZHOU,Wei HUANG. Camouflaged object detection based on Convnextv2 and texture-edge guidance[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(8): 1718-1726.
[4] Zhuguo ZHOU,Yujun LU,Liye LV. Improved YOLOv5s-based algorithm for printed circuit board defect detection[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(8): 1608-1616.
[5] Zhentao DONG,Kaimin XU,Qingying WAN,Xiaofei LIU,Hao SHEN,Shuhan LI,Geqi QI. Multimodal emotional feature analysis based on short video resources of traffic incidents[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(4): 661-668.
[6] Liming LIANG,Pengwei LONG,Jiaxin JIN,Renjie LI,Lu ZENG. Steel surface defect detection algorithm based on improved YOLOv8s[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(3): 512-522.
[7] Youping FU,Hang ZHANG,Menghan LI,Jun MENG. Identity recognition based on multi-dimensional features of pulse wave signals[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(3): 566-576.
[8] Yixuan LI,Ying LI,Qian XIAO,Lingyue WANG,Ning YIN,Shuo YANG. EEG microstate functional network analysis of different emotional false memories[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(1): 49-61.
[9] Junjie LIN,Yaguang ZHU,Chunchao LIU,Haoyang LIU. Digital twin system of legged robot for mobile operation[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(9): 1956-1969.
[10] Haijun WANG,Tao WANG,Cijun YU. CFRP ultrasonic detection defect identification method based on recursive quantitative analysis[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(8): 1604-1617.
[11] Kang HAN,Hongfei ZHAN,Junhe YU,Rui WANG. Rolling bearing fault diagnosis based on dilated convolution and enhanced multi-scale feature adaptive fusion[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(6): 1285-1295.
[12] Bo ZHONG,Pengfei WANG,Yiqiao WANG,Xiaoling WANG. Survey of deep learning based EEG data analysis technology[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(5): 879-890.
[13] Yue LIU,Xueying ZHANG,Guijun CHEN,Lixia HUANG,Ying SUN. EEG-fNIRS emotion recognition based on multi-brain attention mechanism capsule fusion network[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(11): 2247-2257.
[14] Fanrui LUO,Zhenyu LIU,Jiahui REN,Xiaoyu LI,Yang CHENG. Lightweight LiDAR-IMU odometry based on improved Kalman filter[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(11): 2280-2289.
[15] Lin JIANG,Lin-rui LIU,An-na ZHOU,Lu HAN,Ping-yuan LI. Improved ORB-SLAM algorithm based on motion prediction[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(1): 170-177.