|
|
|
| High spatio-temporal resolution precipitation forecast based on dual-polarization radar |
Leping LIN1,2( ),Liang LI1,Ning OUYANG1,2,*( ) |
1. Ministry of Education Key Laboratory of Cognitive Radio and Information Processing, Guilin University of Electronic Technology, Guilin 541004, China 2. School of Information and Communication, Guilin University of Electronic Technology, Guilin 541004, China |
|
|
|
Abstract The DPRF-UNet model, a multimodal precipitation forecasting model that integrated dual-polarization radar variables, was proposed aiming at the problems that existing algorithms had limitations in extrapolating complex and rapidly changing precipitation and the Z-R conversion led to the error accumulation. Dual-polarization radar variables such as reflectivity, differential reflectivity, and specific differential phase were used to directly predict precipitation. The error introduced by empirical conversion was avoided by incorporating microphysical characteristics and employing an end-to-end precipitation forecasting framework, enabling direct precipitation prediction. The research results show that the proposed DPRF-UNet model demonstrates superior performance compared with mainstream models that solely utilize radar reflectivity as input. The average critical success index, Heidke skill score and probability of detection of the DPRF-UNet model across all precipitation thresholds were increased by 2.6%, 2.7% and 1.0%, reaching 0.64, 0.72 and 0.74.
|
|
Received: 10 January 2025
Published: 04 February 2026
|
|
|
| Fund: 国家自然科学基金资助项目(62001133);广西科技基地和人才专项资助项目(桂科 AD19110060);广西自然科学基金资助项目(2017GXNSFBA198212);广西无线宽带通信与信号处理重点实验室基金资助项目(GXKL06200114). |
|
Corresponding Authors:
Ning OUYANG
E-mail: linleping@guet.edu.cn;ynou@guet.edu.cn
|
基于双偏振雷达的高时空分辨率临近降水预报
针对现有算法在复杂快变降水外推中的局限性及Z-R转换带来的误差叠加问题,提出联合双偏振雷达变量的多模态临近降水预报模型DPRF-UNet. 该预报模型利用双偏振雷达变量中的反射率因子、差分反射率和比差分相移,直接对降水量进行预测. 通过纳入降水粒子微物理特性的信息,采用端到端的降水预报框架,该模型避免了因经验性转换带来的误差,实现了降水的直接预测. 研究结果表明,与仅使用雷达反射率因子作为输入的主流模型相比,提出DPRF-UNet模型在所有降水阈值下的临界成功指数、Heidke技巧评分和命中率的平均值分别提高了2.6%、2.7%和1.0%,达到0.64、0.72和0.74.
关键词:
临近降水预报,
双偏振雷达,
深度学习,
时空预测,
时空分辨率
|
|
| [1] |
RAVURI S, LENC K, WILLSON M, et al Skilful precipitation nowcasting using deep generative models of radar[J]. Nature, 2021, 597 (7878): 672- 677
|
|
|
| [2] |
李扬, 刘玉宝, 许小峰 基于深度学习改进数值天气预报模式和预报的研究及挑战[J]. 气象科技进展, 2021, 11 (3): 103- 112 LI Yang, LIU Yubao, XU Xiaofeng Advances and challenges for improving numerical weather prediction models and forecasting using deep learning[J]. Advances in Meteorological Science and Technology, 2021, 11 (3): 103- 112
|
|
|
| [3] |
REINOSO-RONDINEL R, REMPEL M, SCHULTZE M, et al Nationwide radar-based precipitation nowcasting: a localization filtering approach and its application for Germany[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 1670- 1691
doi: 10.1109/JSTARS.2022.3144342
|
|
|
| [4] |
AYZEL G, HEISTERMANN M, WINTERRATH T Optical flow models as an open benchmark for radar-based precipitation nowcasting (rainymotion v0.1)[J]. Geoscientific Model Development, 2019, 12 (4): 1387- 1402
doi: 10.5194/gmd-12-1387-2019
|
|
|
| [5] |
SHI X, CHEN Z, WANG H, et al. Convolutional LSTM network: a machine learning approach for precipitation nowcasting [C]∥Advances in Neural Information Processing Systems 28. Montreal: Curran Associates, Inc, 2015: 802-810.
|
|
|
| [6] |
俞小鼎, 周小刚, 王秀明 雷暴与强对流临近天气预报技术进展[J]. 气象学报, 2012, 70 (3): 311- 337 YU Xiaoding, ZHOU Xiaogang, WANG Xiuming The advances in the nowcasting techniques on thunderstorms and severe convection[J]. Acta Meteorologica Sinica, 2012, 70 (3): 311- 337
|
|
|
| [7] |
黄兴友, 马玉蓉, 胡苏蔓 基于深度学习的天气雷达回波序列外推及效果分析[J]. 气象学报, 2021, 79 (5): 817- 827 HUANG Xingyou, MA Yurong, HU Suman Extrapolation and effect analysis of weather radar echo sequence based on deep learning[J]. Acta Meteorologica Sinica, 2021, 79 (5): 817- 827
|
|
|
| [8] |
马志峰, 张浩, 刘劼 基于深度学习的短临降水预报综述[J]. 计算机工程与科学, 2023, 45 (10): 1731- 1753 MA Zhifeng, ZHANG Hao, LIU Jie A survey of precipitation nowcasting based on deep learning[J]. Computer Engineering and Science, 2023, 45 (10): 1731- 1753
|
|
|
| [9] |
SHI X, GAO Z, LAUSEN L, et al. Deep learning for precipitation nowcasting: a benchmark and a new model [C]//Advances in Neural Information Processing Systems 30. Red Hook, NY: Cur Associates, Inc., 2017.
|
|
|
| [10] |
WANG Y, LONG M, WANG J, et al. PredRNN: recurrent neural networks for predictive learning using spatiotemporal LSTMs [C]//Proceedings of the Neural Information Processing Systems. Long Beach: Curran Associates, Inc, 2017: 879-888.
|
|
|
| [11] |
MA Z, ZHANG H, LIU J DB-RNN: an RNN for precipitation nowcasting deblurring[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 5026- 5041
|
|
|
| [12] |
AYZEL G, SCHEFFER T, HEISTERMANN M RainNet v1.0: a convolutional neural network for radar-based precipitation nowcasting[J]. Geoscientific Model Development, 2020, 13 (6): 2631- 2644
|
|
|
| [13] |
RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation [C]//Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234–241.
|
|
|
| [14] |
TREBING K, STAǸCZYK T, MEHRKANOON S SmaAt-UNet: precipitation nowcasting using a small attention-UNet architecture[J]. Pattern Recognition Letters, 2021, 145: 178- 186
|
|
|
| [15] |
YANG Y, MEHRKANOON S. AA-TransUNet: attention augmented TransUNet for nowcasting tasks [C]//Proceedings of the International Joint Conference on Neural Networks. Padua: IEEE, 2022: 1–8.
|
|
|
| [16] |
FERNÁNDEZ J G, MEHRKANOON S Broad-UNet: multi-scale feature learning for nowcasting tasks[J]. Neural Networks, 2021, 144: 419- 427
|
|
|
| [17] |
REN G, SUN Y, SUN H, et al A case study on two differential reflectivity columns in a convective cell: phased-array radar observation and cloud model simulation[J]. Remote Sensing, 2024, 16 (3): 460
|
|
|
| [18] |
PAN X, LU Y, ZHAO K, et al Improving nowcasting of convective development by incorporating polarimetric radar variables into a deep-learning model[J]. Geophysical Research Letters, 2021, 48 (21): e2021GL095302
|
|
|
| [19] |
ZHU K, CHEN H, HAN L. MCT U-Net: a deep learning nowcasting method using dual-polarization radar observations [C]//IEEE International Geoscience and Remote Sensing Symposium. Kuala Lumpur: IEEE, 2022: 4665–4668.
|
|
|
| [20] |
ROMBEEK N, LEINONEN J, HAMANN U Exploiting radar polarimetry for nowcasting thunderstorm hazards using deep learning[J]. Natural Hazards and Earth System Sciences, 2024, 24 (1): 133- 144
|
|
|
| [21] |
RYZHKOV A, ZHANG P, BUKOVČIĆ P, et al Polarimetric radar quantitative precipitation estimation[J]. Remote Sensing, 2022, 14 (7): 1695
|
|
|
| [22] |
庄潇然, 郑玉, 王亚强, 等 基于深度学习的融合降水临近预报方法及其在中国东部地区的应用研究[J]. 气象学报, 2023, 81 (2): 286- 303 ZHUANG Xiaoran, ZHENG Yu, WANG Yaqiang, et al Research on fusion precipitation prediction method based on deep learning and its application in Eastern China[J]. Acta Meteorologica Sinica, 2023, 81 (2): 286- 303
|
|
|
| [23] |
CREMONINI R, VOORMANSIK T, POST P, et al Estimation of extreme precipitation events in Estonia and Italy using dual-polarization weather radar quantitative precipitation estimations[J]. Atmospheric Measurement Techniques, 2023, 16 (11): 2943- 2956
|
|
|
| [24] |
HUANG H, ZHAO K, ZHANG G, et al Quantitative precipitation estimation with operational polarimetric radar measurements in Southern China: a differential phase–based variational approach[J]. Journal of Atmospheric and Oceanic Technology, 2018, 35 (6): 1253- 1271
|
|
|
| [25] |
张永华. 基于深度学习的华南登陆台风偏振雷达定量降水估测研究 [D]. 南京: 南京信息工程大学, 2022. ZHANG Yonghua. Research on quantitative precipitation estimation of landfalling typhoons in South China based on deep learning and polarimetric radar [D]. Nanjing: Nanjing University of Information Science and Technology, 2022.
|
|
|
| [26] |
GU X, WANG L, DENG Z, et al Adaptive spatial and frequency experts fusion network for medical image fusion[J]. Biomedical Signal Processing and Control, 2024, 96: 106478
|
|
|
| [27] |
COOLEY J W, TUKEY J W An algorithm for the machine calculation of complex Fourier series[J]. Mathematics of Computation, 1965, 19 (90): 297- 301
|
|
|
| [28] |
HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 13708–13717.
|
|
|
| [29] |
KINGMA D P, BA J. Adam: a method for stochastic optimization [EB/OL]. (2014-12-22). https://arxiv.org/abs/1412.6980.
|
|
|
| [30] |
SMITH L N, TOPIN N. Super-convergence: very fast training of neural networks using large learning rates [C]//Proceedings of the Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications. Baltimore: SPIE, 2019: 36.
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|