Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2026, Vol. 60 Issue (2): 445-454    DOI: 10.3785/j.issn.1008-973X.2026.02.023
    
Analytical method for evaluating lateral bearing capacity of gravel-filled canister-monopile considering pile-canister deformation coordination
Ruilin XU1,2(),Enze YI1,2,Juntao WU1,2,*(),Kuihua WANG1,2,Zhiqing ZHANG3,Lüjun TANG4
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2. Center for Balance Architecture, Zhejiang University, Hangzhou 310063, China
3. College of Architecture and Energy Engineering, Wenzhou University of Technology, Wenzhou 325035, China
4. College of Civil Engineering and Architecture, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China
Download: HTML     PDF(1842KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

To address the high cost of foundations for offshore wind turbines in deep and far-sea environments, a novel gravel-filled canister-monopile (GCM) was proposed, which consists of three components: a large-diameter monopile, a steel canister, and gravel filled between the pile and the canister. During service, the gravel was able to fill gaps generated in the pile–soil interface due to long-term cyclic loading, effectively mitigating the weakening of the surrounding soil and thereby enhancing the lateral bearing capacity of the monopile. To analyze the lateral bearing behavior of the gravel-filled canister-monopile, a strain wedge coupled model considering pile–canister deformation coordination was developed, taking into account the increase in lateral support stiffness provided by the filled gravel and the horizontal displacement development of the canister under load. By reducing the canister diameter to that of the pile, setting the canister height to zero, and treating the filled gravel as surrounding soil, the proposed model degenerated into a conventional monopile lateral bearing model, which was validated through comparison with existing analytical theories. Further comparisons with finite element analysis results confirmed the reasonableness and reliability of the proposed model. Based on the validated model, a parametric analysis of the main design parameters of the gravel-filled canister-monopile was conducted. The results indicated that the steel canister diameter, height, and the elastic modulus of the gravel were all positively correlated with the lateral bearing capacity, while the canister embedment depth exhibited an optimal design value.



Key wordscomposite pile      offshore wind turbine      modified strain wedge method      lateral bearing capacity      parameter analysis      sand     
Received: 07 February 2025      Published: 03 February 2026
CLC:  TU 437  
Fund:  中国工程院战略研究与咨询项目(2025-XZ-75);国家自然科学基金资助项目(52178358, 52108349, 52178367);浙江省自然科学基金重点资助项目(LTGG24E080001).
Corresponding Authors: Juntao WU     E-mail: ruilinxu@zju.edu.cn;wujuntao31@126.com
Cite this article:

Ruilin XU,Enze YI,Juntao WU,Kuihua WANG,Zhiqing ZHANG,Lüjun TANG. Analytical method for evaluating lateral bearing capacity of gravel-filled canister-monopile considering pile-canister deformation coordination. Journal of ZheJiang University (Engineering Science), 2026, 60(2): 445-454.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2026.02.023     OR     https://www.zjujournals.com/eng/Y2026/V60/I2/445


考虑桩-筒变形协调的钢护筒-碎石复合桩水平承载力计算理论

为了解决深远海海上风机基础成本较高的问题,提出由大直径单桩、钢护筒与桩筒间填充碎石3个部分组成的新型钢护筒-碎石复合桩. 在服役期间,碎石能够填充桩-土因长期循环作用产生的间隙,有效抑制桩周土体弱化,提升单桩的水平承载力. 针对水平受荷状态下的钢护筒-碎石复合桩进行承载力分析,考虑桩筒间填充碎石对桩身侧向支承刚度的提升作用以及护筒受荷后的水平位移发展,提出考虑桩-筒变形协调的应变楔耦合计算模型. 通过将筒径缩小至桩径,筒高缩减至零,填充碎石设置为桩周土体,使所提计算模型退化至单桩水平承载力计算模型,并与已有解析理论进行对比验证. 将所提模型计算结果与有限元计算结果对比,进一步验证模型的合理性及可靠性. 基于验证后的计算模型对钢护筒-碎石复合桩的主要设计参数进行分析,结果表明,钢护筒直径、高度与筒内碎石弹性模量均与钢护筒-碎石复合桩水平承载力呈正相关关系,护筒埋深存在最优设计值.


关键词: 复合桩,  海上风电,  修正应变楔方法,  水平承载力,  参数分析,  砂土 
Fig.1 Schematic diagram of gravel-filled canister-monopile
Fig.2 Schematic diagram of strain wedge model
Fig.3 Schematic diagram of layered calculation of strain wedge model[12]
Fig.4 Schematic diagram of vertical section of cylinder motion and modified strain wedge
Fig.5 Schematic diagram of calculation model for lateral bearing capacity of gravel-filled canister-monopile
Fig.6 Flowchart of theoretical calculation for lateral bearing capacity of gravel-filled canister-monopile
Fig.7 Comparison of results between two strain-wedge calculation models
Fig.8 Model schematic of gravel-filled canister-monopile
部件参数数值
土体有效重度/(kN·m?3)14.935
摩擦角/(°)39
膨胀角/(°)9
黏聚力/kPa0.10
弹性模量/MPa40
泊松比0.25
桩体埋入桩长L/m50
桩径D/m2.50
抗弯刚度EI/(GN·m2)56.66
等效弹性模量/GPa29.55
泊松比0.20
护筒筒高H/m5
筒径/m7.5
壁厚/m0.05
埋深/m5
Tab.1 Component parameters of finite element model
Fig.9 Distribution of pile displacement at various depths under different working conditions
名称参数数值
试验干砂有效重度/(kN·m?3)14.935
峰值摩擦角/(°)39
残余摩擦角/(°)35
黏聚力/kPa0.00
相对密实度Dr/%65
泊松比0.25
原型钢管桩埋入桩长L/m50
桩径D/m2.50
抗弯刚度EI/(GN·m2)56.66
壁厚/m0.045
泊松比0.20
Tab.2 Parameters for pile performance tests
Fig.10 Comparison of displacement-load curves for gravel-filled canister-monopile and single pile
参数数值
筒径Dc/m2D、3D、4D、5D
筒高H/m0.10L、0.15L、0.20L、0.25L
护筒埋深hc/m0.5H、0.6H、0.7H、0.8H、0.9H、1.0H
碎石弹性模量Es/MPa40、400、400040000
Tab.3 Selected values of main design parameters for gravel-filled conister-monopile
Fig.11 Comparison of performance parameters for gravel-filled canister-monopile under different canister diameters
Fig.12 Comparison of performance parameters for gravel-filled canister-monopile under different canister heights
Fig.13 Comparison of performance parameters for gravel-filled canister-monopile under different embedded depths of canister
Fig.14 Comparison of performance parameters for gravel-filled canister-monopile under different elastic moduli of gravel
[1]   范小雪, 李原, 吴文兵, 等 饱和土中大直径缺陷桩水平振动响应研究[J]. 岩石力学与工程学报, 2020, 39 (2): 413- 423
FAN Xiaoxue, LI Yuan, WU Wenbing, et al Horizontal vibration response of defective large-diameter piles embedded in saturated soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39 (2): 413- 423
[2]   ARSHI H S, STONE K, GUNZEL F. Cost efficient design of monopile foundations for offshore wind turbines [C]// Proceedings of the 16th European Conference on Soil Mechanics and Geotechnical Engineering: Geotechnical Engineering for Infrastructure Development. London: [s.n.], 2015: 1237–1242.
[3]   高鲁超, 戴国亮, 姚中原, 等 水泥土大直径单桩水平承载性能试验研究[J]. 东南大学学报: 自然科学版, 2024, 54 (1): 142- 148
GAO Luchao, DAI Guoliang, YAO Zhongyuan, et al Experimental study on lateral bearing behaviors of large-diameter monopiles in cement-soil[J]. Journal of Southeast University: Natural Science Edition, 2024, 54 (1): 142- 148
doi: 10.3969/j.issn.1001-0505.2024.01.018
[4]   王安辉, 章定文, 谢京臣 软黏土中劲性复合桩水平承载特性p-y曲线研究[J]. 岩土工程学报, 2020, 42 (2): 381- 389
WANG Anhui, ZHANG Dingwen, XIE Jingchen p-y curves for lateral bearing behavior of strength composite piles in soft clay[J]. Chinese Journal of Geotechnical Engineering, 2020, 42 (2): 381- 389
doi: 10.11779/CJGE202002020
[5]   QIU X, M HESHAM EI NAGGAR M, WANG K. Experimental and numerical studies on lateral bearing characteristics of innovative gravel-filled canister-monopile (GCM) hybrid foundation[J]. Marine Georesources and Geotechnology, 2024, 42 (12): 1824- 1843
doi: 10.1080/1064119X.2024.2304049
[6]   常林越, 王金昌, 朱向荣, 等 水平受荷长桩弹塑性计算解析解[J]. 岩土力学, 2010, 31 (10): 3173- 3178
CHANG Linyue, WANG Jinchang, ZHU Xiangrong, et al Analytical elastoplastic solutions of laterally loaded long piles[J]. Rock and Soil Mechanics, 2010, 31 (10): 3173- 3178
[7]   苏静波, 邵国建, 刘宁 基于P-Y曲线法的水平受荷桩非线性有限元分析[J]. 岩土力学, 2006, 27 (10): 1781- 1785
SU Jingbo, SHAO Guojian, LIU Ning Nonlinear finite element analysis of piles under lateral load based on P-Y curves[J]. Rock and Soil Mechanics, 2006, 27 (10): 1781- 1785
doi: 10.3969/j.issn.1000-7598.2006.10.028
[8]   陈祥, 孙进忠, 蔡新滨 基桩水平静载试验及内力和变形分析[J]. 岩土力学, 2010, 31 (3): 753- 759
CHEN Xiang, SUN Jinzhong, CAI Xinbin Horizontal static loading test and analyses of internal force and distortion on single pile[J]. Rock and Soil Mechanics, 2010, 31 (3): 753- 759
[9]   NORRIS G M. Theoretically based BEF laterally loaded pile analysis [C]// Proceedings of the 3rd International Conference on Numerical Methods in Offshore Piling. Paris: Technip, 1986: 361–386.
[10]   ASHOUR M, NORRIS G, PILLING P Lateral loading of a pile in layered soil using the strain wedge model[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124 (4): 303- 315
doi: 10.1061/(ASCE)1090-0241(1998)124:4(303)
[11]   徐令宇. 桩基础水平响应计算方法及其抗液化性能研究 [D]. 大连: 大连理工大学, 2013: 1−156.
XU Lingyu. Computation method for response of laterally loaded piles and liquefaction-mitigation performance of piled foundation [D]. Dalian: Dalian University of Technology, 2013: 1−156.
[12]   杨晓峰, 张陈蓉, 黄茂松, 等 砂土中桩土侧向相互作用的应变楔模型修正[J]. 岩土力学, 2016, 37 (10): 2877- 2884
YANG Xiaofeng, ZHANG Chenrong, HUANG Maosong, et al Modification of strain wedge method for lateral soil-pile interaction in sand[J]. Rock and Soil Mechanics, 2016, 37 (10): 2877- 2884
doi: 10.16285/j.rsm.2016.10.019
[13]   ASHOUR M, ALAAELDIN A, ARAB M G Laterally loaded battered piles in sandy soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146: 06019017
doi: 10.1061/(ASCE)GT.1943-5606.0002186
[14]   周德泉, 朱沁, 王创业, 等 基于应变楔模型的堆载下被动斜桩受力变形分析[J]. 湖南大学学报: 自然科学版, 2024, 51 (5): 46- 55
ZHOU Dequan, ZHU Qin, WANG Chuangye, et al Analysis on stress and deformation of passive battered piles under surcharge based on SW model[J]. Journal of Hunan University: Natural Sciences, 2024, 51 (5): 46- 55
[15]   罗丽娟, 任翔, 李晟, 等. 基于土拱效应和黄土改进应变楔模型的抗滑桩水平承载力计算[EB/OL]. (2024−03−30)[2025−02−07]. https://doi.org/10.16183/j.cnki.jsjtu.2023.650.
[16]   DUNCAN J M, CHANG C Y Nonlinear analysis of stress and strain in soils[J]. Journal of the Soil Mechanics and Foundations Division, 1970, 96 (5): 1629- 1653
doi: 10.1061/JSFEAQ.0001458
[17]   BYRNE P M, CHEUNG H, YAN L Soil parameters for deformation analysis of sand masses[J]. Canadian Geotechnical Journal, 1987, 24 (3): 366- 376
doi: 10.1139/t87-047
[18]   WONG K S, TEH C I Negative skin friction on piles in layered soil deposits[J]. Journal of Geotechnical Engineering, 1995, 121 (6): 457- 465
doi: 10.1061/(ASCE)0733-9410(1995)121:6(457)
[19]   陈仁朋, 周万欢, 曹卫平, 等 改进的桩土界面荷载传递双曲线模型及其在单桩负摩阻力时间效应研究中的应用[J]. 岩土工程学报, 2007, 29 (6): 824- 830
CHEN Renpeng, ZHOU Wanhuan, CAO Weiping, et al Improved hyperbolic model of load-transfer for pile-soil interface and its application in study of negative friction of single piles considering time effect[J]. Chinese Journal of Geotechnical Engineering, 2007, 29 (6): 824- 830
doi: 10.3321/j.issn:1000-4548.2007.06.006
[20]   KULHAWY F H. Limiting tip and side resistance: fact or fallacy? [C]// Proceedings of Symposium on Analysis and Design of Pile Foundations. New York: ASCE, 1984: 80–98.
[21]   BRIAUD J L, SMITH T, MEYER B. Laterally loaded piles and the pressuremeter: comparison of existing methods [M]// LANGER J A, MOSLEY E T, THOMPSON C D. Laterally loaded deep foundations: analysis and performance. [S.l.]: ASTM, 1984: 97–111.
[22]   DOBRY R, VICENTI E, O’ROURKE M J, et al Horizontal stiffness and damping of single piles[J]. Journal of the Geotechnical Engineering Division, 1982, 108 (3): 439- 459
doi: 10.1061/AJGEB6.0001259
[23]   MAKRIS N, GAZETAS G Displacement phase differences in a harmonically oscillating pile[J]. Géotechnique, 1993, 43 (1): 135- 150
[24]   WU J, EL NAGGAR M H, WANG K Analytical model for laterally loaded soil-extended pile shaft applied to verifying the applicability of lateral PS method[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147 (10): 04021103
doi: 10.1061/(ASCE)GT.1943-5606.0002636
[25]   刘汉龙, 朱春鹏, 沈杨 酸碱污染土工程性质研究[J]. 湖南大学学报: 自然科学版, 2008, 35 (11): 39- 44
LIU Hanlong, ZHU Chunpeng, SHEN Yang Study on fundamental engineering properties of polluted soil by acid and alkali[J]. Journal of Hunan University: Natural Sciences, 2008, 35 (11): 39- 44
[26]   ZHANG L Nonlinear analysis of laterally loaded rigid piles in cohesionless soil[J]. Computers and Geotechnics, 2009, 36 (5): 718- 724
doi: 10.1016/j.compgeo.2008.12.001
[27]   ACHMUS M, ABDEL-RAHMAN K. Finite element modelling of horizontally loaded monopile foundations for offshore wind energy converters in Germany [C]// Proceedings of the International Sympodium on Frontiers in Offshore Geotechnics. London: [s.n.], 2005: 391–396.
[28]   WU J, EL NAGGAR M H, WANG K Dynamic response of poroelastic soil adjacent to an axially vibrating pile[J]. Journal of Engineering Mechanics, 2024, 150 (11): 04024084
doi: 10.1061/JENMDT.EMENG-7930
[29]   朱斌, 熊根, 刘晋超, 等 砂土中大直径单桩水平受荷离心模型试验[J]. 岩土工程学报, 2013, 35 (10): 1807- 1815
ZHU Bin, XIONG Gen, LIU Jinchao, et al Centrifuge modelling of a large-diameter single pile under lateral loads in sand[J]. Chinese Journal of Geotechnical Engineering, 2013, 35 (10): 1807- 1815
[1] Wenbin LIN,Xianfeng LIU,Yupeng GAO,Shenggen CAO,Xianghang CHEN,Xiaohui CHENG. Experimental study on weatherability of MICP-reinforced sea sand under seawater environment[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(8): 1746-1754.
[2] Yiyao JIANG,Yanbo CHEN,Yi BIAN,Wenjie XU,Liangtong ZHAN,Han KE,Qingyang WANG. Experimental study on lead and cadmium composite contaminated sand solidified and repaired by enzyme induced carbonate precipitation[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(2): 332-341.
[3] Lingkai ZHANG,Wei JIA. Mechanical property of geopolymer solidified aeolian sand under dry-wet-freeze-thaw cycle[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(11): 2361-2369.
[4] Shunhua ZHENG,Yingchao WANG,Fan CHEN,Zheng ZHANG,Qingli LI,Zihao FENG. Characteristics of water and sand gushing disasters in subway tunnels and disaster modes analysis[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(1): 152-166.
[5] Rui CHEN,Hai CHEN,Ruoyu HAO,Weixing BAO,Lin LI,Wenmin LUO. Stress-strain-strength characteristics and microstructure of geopolymer stabilized aeolian sand[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(1): 177-186.
[6] Jianping LIN,Kun CHEN,Jianchao PAN,Guannan WANG,Qian FENG. New composite finite element for static, dynamic and buckling analysis of sandwich composite beams[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(3): 518-528.
[7] Jiahao CHEN,Junchao LI,Bin ZHU,Qiang LU,Yubing WANG,Longhua GUAN,Fengkui ZHAO. Model test on influence of initial stress on blast wave propagation in dry sand foundation[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(3): 579-588.
[8] Jun-cheng LIU,Yong TAN,Xiang-hua SONG,Dong-dong FAN,Tian-ren LIU. Effects of through-wall leaking during excavation in water-rich sand on lateral wall deflections and surrounding environment[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 530-541.
[9] Ling-gang KONG,Jia YU,Yun-min CHEN. Centrifuge tests of ship impact on pile groups beneath offshore wind turbines[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(2): 330-339.
[10] Yi-long LI,Zhen GUO,Qiang XU,Yu-jie LI. Experimental research on wet-dry cycle of MICP cemented calcareous sand in seawater environment[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(9): 1740-1749.
[11] Hong-yang LIU,Qiang LUO,Wei-long WANG,Pin-feng LI,Hong-fei MA,Dong-qing ZHANG. Development of a test apparatus for staged construction of embankment in geotechnical centrifuge model tests[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(8): 1504-1513.
[12] Ren-qiang XI,Xiu-li DU,Pi-guang WANG,Cheng-shun XU,Kun XU. Integrated seismic response of monopile supported offshore wind turbines[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 757-766.
[13] Pei GE,Wei HUANG,Meng LI. Experimental study on recycled brick aggregate concrete frame model[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 10-19.
[14] Yao ZHANG,Qiang LIU,Xu-nan LIU,Guodong XU,Xiao HONG,Shui-hua ZHOU,Wei-jie LIU,Xi-zeng ZHAO. Variability of rip currents induced by rhythmic sandbars[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1849-1857.
[15] Xuan-chen DING,Yu-min CHEN,Xin-lei ZHANG. Experimental study on microbial reinforced calcareous sand using ring shear apparatus[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1690-1696.