Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (9): 1849-1857    DOI: 10.3785/j.issn.1008-973X.2020.09.022
    
Variability of rip currents induced by rhythmic sandbars
Yao ZHANG1(),Qiang LIU1,Xu-nan LIU1,Guodong XU1,Xiao HONG2,Shui-hua ZHOU2,Wei-jie LIU3,*(),Xi-zeng ZHAO3
1. National Marine Hazard Mitigation Service, Ministry of Natural Resources, Beijing 100000, China
2. South China Sea Prediction Center, Guangzhou 510000, China
3. College of Ocean, Zhejiang University, Zhoushan 316000, China
Download: HTML     PDF(1268KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Base on the case study of three coastal beaches in south China, the sensitivity of multi-channel rip currents to the bathymetry and the wave conditions was checked by groups of numerical simulations using the Boussinesq phase-resolving model. The time-averaged velocity, vorticity, and surface elevation were computed and analyzed. Results indicate that the rip strength was in direct proportion to the incident wave height and the channel width. The rip current might be totally absent in small channels when the majority of water flows out through neighboring broader pathways. Alongshore currents prevailed over the rip current when the incident wave angle reached 11 degrees, which was not favorable to the existence of channeled sandbars. Vortices appeared around the edge of the bar crest due to nonuniform wave breaking over the rapid-varying bathymetry. The strong spin of the flow was significantly intensified and stretched along the sandbar array as the wave direction deflected. The setup water was held landward largely by the sandbar and substantially increased with the wave angle. There was no water surface depression in the rip channel as the angle increased, which fundamentally explained why the rip current could not persist when the incident wave became slightly oblique.



Key wordsrip current      rhythmic sandbar      wave direction      numerical modelling      marine hazard     
Received: 30 August 2019      Published: 22 September 2020
CLC:  P 73  
Corresponding Authors: Wei-jie LIU     E-mail: yzhang@nmhms.org.cn;weijieliu@zju.edu.cn
Cite this article:

Yao ZHANG,Qiang LIU,Xu-nan LIU,Guodong XU,Xiao HONG,Shui-hua ZHOU,Wei-jie LIU,Xi-zeng ZHAO. Variability of rip currents induced by rhythmic sandbars. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1849-1857.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.09.022     OR     http://www.zjujournals.com/eng/Y2020/V54/I9/1849


韵律沙坝触发的裂流动态性研究

基于3个华南海滩案例分析结果,采用Boussinesq相位解析水动力数值模型,模拟裂流环流,检验裂流对多沟槽浅滩沙坝和不同浪高、浪向的敏感性,计算、分析时均流速、涡量和水位的空间分布. 结果表明,裂流强度与入射波高、裂流槽宽度成正比. 在多沟槽裂流系统中,当大部分水流集中从邻近的较宽通道流出时,较窄的沟槽可能不产生裂流. 模拟结果表明:当入射角达到11° 时,沿岸流会逐渐取代离岸流而占主导地位,不利于沟槽沙坝的持续存在. 由于突变地形导致的波浪不均匀破碎,沙坝边缘附近有强涡旋现象,水流旋度随着波向偏转而明显增强,并且沿沙坝阵列拉伸. 沙坝促进了岸边的波浪增水,且堆积水量随着波角的变大而增加. 随着入射波波向的偏转,裂流槽内没有出现水面凹陷,这从机理上解释了当入射波角略微倾斜时裂流现象不能持续的原因.


关键词: 裂流,  韵律沙坝,  波向,  数值模拟,  海洋灾害 
Fig.1 Remote sensing image analysis of beach rupture risk
Fig.2 Statistics of wave observation data in study area
Fig.3 Aerial photos at 10-mile beach
Fig.4 Video snapshots of the dye-tracer in the rip current at 10-mile beach on July 12, 2018
模拟工况 Hs/m 波向 T/s θ/(°)
1 2.0 SE-SSE 4.9 0
2 1.4 SE-SSE 4.9 0
3 1.2 SE-SSE 4.9 0
4 0.7 SE-SSE 4.9 0
5 1.4 SSE 4.9 11.25
6 1.4 S 4.9 33.75
Tab.1 Incident wave conditions for the numerical simulation
Fig.5 Bathymetry of the simulation domain with sand bars and 4 rip channels
Fig.6 Computed spatial distribution of averaged velocities for different incident wave heights with incident angle of 0°
Fig.7 Computed spatial distribution of averaged velocities for different incident angles (Hs = 1.4 m)
Fig.8 Computed spatial distribution of averaged vorticity for different incident angles (Hs = 1.4 m)
Fig.9 Computed spatial distribution of averaged surface elevation for different incident angles (Hs = 1.4 m).
[1]   DALRYMPLE R A, MACMAHAN J H, RENIERS A J H M, et al Rip Currents[J]. Annual Review of Fluid Mechanics, 2011, 43 (43): 551- 581
[2]   王彦, 邹志利 海岸裂流的研究进展及其展望[J]. 海洋学报, 2014, 36 (5): 170- 176
[3]   DROZDZEWSKI D, SHAW W, DOMINEY-HOWES D, et al Surveying rip current survivors: preliminary insights into the experiences of being caught in rip currents[J]. Natural Hazards and Earth System Sciences, 2012, 12 (4): 1201- 1211
doi: 10.5194/nhess-12-1201-2012
[4]   United States Lifesaving Association. National lifesaving statistics (2013—2017) [J/OL]. [2019-08-30]. http://arc.usla.org/Statistics/public.asp.
[5]   GENSINI V A, ASHLEY W S An examination of rip current fatalities in the United States[J]. Natural Hazards, 2010, 54 (1): 159- 175
doi: 10.1007/s11069-009-9458-0
[6]   BRIGHTON B, SHERKER S, BRANDER R, et al Rip current related drowning deaths and rescues in Australia 2004-2011[J]. Natural Hazards and Earth System Sciences, 2013, 13 (4): 1069- 1075
doi: 10.5194/nhess-13-1069-2013
[7]   SHRODER J F, ELLIS J T, SHERMAN D J. Coastal and marine hazards, risks, and disasters [M]. Waltham: Elsevier, 2015: 335-380.
[8]   LINARES á, WU C H, BECHLE A J, et al Unexpected rip currents induced by a meteotsunami[J]. Scientific Reports, 2019, 9 (1): 2105
doi: 10.1038/s41598-019-38716-2
[9]   MACMAHAN J H, THORNTON E B, RENIERS A J H M Rip current review[J]. Coastal Engineering, 2006, 53 (2/3): 191- 208
[10]   BENASSAI G, AUCELLI P, BUDILLON G, et al Rip current evidence by hydrodynamic simulations, bathymetric surveys and UAV observation[J]. Natural Hazards and Earth System Sciences Discussions, 2017, 17 (9): 1493- 1503
doi: 10.5194/nhess-17-1493-2017
[11]   CASTELLE B, SCOTT T, BRANDER R W, et al Rip current types, circulation and hazard[J]. Earth-Science Reviews, 2016, 163: 1- 21
doi: 10.1016/j.earscirev.2016.09.008
[12]   王彦, 邹志利 平直沙坝海岸叠加波浪的裂流试验[J]. 水科学进展, 2015, 26 (1): 123- 129
WANG Yan, ZOU Zhi-li Experimental sudy of rip currents by intersecting wave on barred beach[J]. Advances in Water Science, 2015, 26 (1): 123- 129
[13]   CASTELLE B, MICHALLET H, MARIEU V, et al Laboratory experiment on rip current circulations over a moveable bed: drifter measurements[J]. Journal of Geophysical Research Oceans, 2010, 115 (C12):
[14]   彭石, 邹志利 海岸裂流的浮子示踪法实验测量[J]. 水动力学研究与进展: A辑, 2012, 26 (6): 645- 651
PENG Shi, ZOU Zhi-li Experimental measurement of rip currents with video-tracked drifters[J]. Chinese Journal of Hydrodynamics: A, 2012, 26 (6): 645- 651
[15]   HALLER M C, DALRYMPLE R A, SVENDSEN I A Experimental study of nearshore dynamics on a barred beach with rip channels[J]. Journal of Geophysical Research Oceans, 2002, 107 (C6): 912
[16]   KENNEDY A., THOMAS D Drifter measurements in a laboratory rip current[J]. Journal of Geophysical Research, 2004, 109 (C8): C08005
[17]   KENNEDY A B, ZHANG Y The stability of wave-driven rip current circulation[J]. Journal of Geophysical Research, 2008, 113 (C3): 682- 695
[18]   SUANDA S H, FEDDERSEN F A self-similar scaling for cross-shelf exchange driven by transient rip currents[J]. Geophysical Research Letters, 2015, 42 (13): 5427- 5434
doi: 10.1002/2015GL063944
[19]   MARCHESIELLO P, BENSHILA R, ALMAR R, et al On tridimensional rip current modeling[J]. Ocean Modelling, 2015, 96: 36- 48
doi: 10.1016/j.ocemod.2015.07.003
[20]   唐燕玲, 徐卢笛, 贺治国, 等 洋山海域三维潮流和余流特征的数值模拟[J]. 浙江大学学报: 工学版, 2019, 53 (2): 114- 123
TANG Lin-yan, XU Lu-di, HE Zhi-guo, et al Numerical simulation of three-dimensional characteristics of tidal current and residual current in Yangshan Harbor[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (2): 114- 123
[21]   WEIR B, UCHIYAMA Y, LANE E M, et al A vortex force analysis of the interaction of rip currents and surface gravity waves[J]. Journal of Geophysical Research Oceans, 2011, 116: C05001
[22]   ZHANG Y, KENNEDY A B, PANDA N, et al Generating-absorbing sponge layers for phase-resolving wave models[J]. Coastal Engineering, 2014, 84: 1- 9
doi: 10.1016/j.coastaleng.2013.10.019
[23]   ZHANG Y, KENNEDY A B, PANDA N, et al Boussinesq-Green-Naghdi rotational water wave theory[J]. Coastal Engineering, 2013, 73: 13- 27
doi: 10.1016/j.coastaleng.2012.09.005
[24]   LIU W, NING Y, ZHANG Y, et al Shock-capturing Boussinesq modelling of broken wave characteristics near a vertical seawall[J]. Water, 2018, 10 (12): 1876
doi: 10.3390/w10121876
[25]   CHEN Q, DALRYMPLE R A, KIRBY J T, et al Boussinesq modeling of a rip current system[J]. Journal of Geophysical Research, 1999, 20617- 20637
[26]   HAAS K A, SVENDSEN I A, HALLER M C, et al Quasi-three-dimensional modeling of rip current systems[J]. Journal of Geophysical Research, 2003, 108 (C7): 331- 351
[27]   JOHNSON D, PATTIARATCHI C Boussinesq modelling of transient rip currents[J]. Coastal Engineering, 2006, 53 (5/6): 419- 439
[28]   ZHANG Y, KENNEDY A B, TOMICZEK T, et al Validation of Boussinesq-Green-Naghdi modeling for surf zone hydrodynamics[J]. Ocean Engineering, 2016, 111: 299- 309
doi: 10.1016/j.oceaneng.2015.11.004
[29]   AUSTIN M, SCOTT T, BROWN J, et al Temporal observations of rip current circulation on a macro-tidal beach[J]. Continental Shelf Research, 2010, 30 (9): 1149- 1165
doi: 10.1016/j.csr.2010.03.005
[30]   ATHANASIOU P, DE BOER W, YOO J, et al Analysing decadal-scale crescentic bar dynamics using satellite imagery: a case study at Anmok beach, South Korea[J]. Marine Geology, 2018, 405: 1- 11
doi: 10.1016/j.margeo.2018.07.013
[31]   DOMINEYHOWES D, BRANDER R W, DROZDZEWSKI D "Dye in the water": a visual approach to communicating the rip current hazard[J]. Science Communication Linking Theory and Practice, 2014, 36 (6): 802- 810
[32]   SCHMIDT W E, WOODWARD B T, MILLIKAN K S, et al A GPS-tracked surf zone drifter[J]. Journal of Atmospheric and Oceanic Technology, 2003, 20 (7): 1069- 1075
doi: 10.1175/1460.1
[33]   MACMAHAN J H, THORNTON E B, STANTON T P, et al RIPEX: observations of a rip current system[J]. Marine Geology, 2005, 218 (1-4): 113- 134
doi: 10.1016/j.margeo.2005.03.019
[34]   MACMAHAN J, THORNTON B E Low-cost handheld global positioning system for measuring surf-zone currents[J]. Journal of Coastal Research, 2009, 25 (3): 744- 754
[35]   MCCARROLL R J, BRANDER R W, TURNER I L, et al Lagrangian observations of circulation on an embayed beach with headland rip currents[J]. Marine Geology, 2014, 355: 173- 188
doi: 10.1016/j.margeo.2014.05.020
[36]   SCOTT T, AUSTIN M, MASSELINK G, et al Dynamics of rip currents associated with groynes-field measurements, modelling and implications for beach safety[J]. Coastal Engineering, 2016, 107: 53- 69
doi: 10.1016/j.coastaleng.2015.09.013
[37]   RADERMACHER M, DE SCHIPPER M A, RENIERS A J H M Sensitivity of rip current forecasts to errors in remotely-sensed bathymetry[J]. Coastal Engineering, 2018, 135: 66- 76
doi: 10.1016/j.coastaleng.2018.01.007
[38]   HOLMAN R, HALLER M C Remote sensing of the nearshore[J]. Annual Review of Marine Science, 2013, 5 (1): 95- 113
doi: 10.1146/annurev-marine-121211-172408
[39]   YOON S B, PARK W K, CHOI J Observation of rip current velocity at an accidental event by using video image analysis[J]. Journal of Coastal Research, 2014, 72: 16- 21
doi: 10.2112/SI72-004.1
[40]   HALLER M C, HONEGGER D, PATRICIO ANDRES CATALáN Rip current observations via marine radar[J]. Journal of Waterway Port Coastal and Ocean Engineering, 2014, 140 (2): 115- 124
doi: 10.1061/(ASCE)WW.1943-5460.0000229
[41]   HALLER M C, DALRYMPLE R A Rip current instabilities[J]. Journal of Fluid Mechanics, 2001, 433 (433): 161- 192
[42]   YU J, CHEN S Hydrodynamic instability mechanism for rip currents[J]. Studies in Applied Mathematics, 2015, 135 (2): 196- 223
doi: 10.1111/sapm.12074
[43]   WRIGHT L D, SHORT A D, GREEN M O Short-term changes in the morphodynamic states of beaches and surf zones: An empirical predictive model[J]. Marine Geology, 1985, 62 (3): 339- 364
[44]   MASSELINK G, SHORT A D The effect of tide range on beach morphodynamics and morphology: a conceptual beach model[J]. Journal of Coastal Research, 1993, 9 (3): 785- 800
[45]   SCOTT T, MASSELINK G, RUSSELL P Morphodynamic characteristics and classification of beaches in England and Wales[J]. Marine Geology, 2011, 286 (1–4): 1- 20
[46]   LI Z Rip current hazards in South China headland beaches[J]. Ocean and Coastal Management, 2016, 121: 23- 32
doi: 10.1016/j.ocecoaman.2015.12.005
[47]   ALVAREZELLACURIA A, ORFILA A, OLABARRIETA M, et al A nearshore wave and current operational forecasting system[J]. Journal of Coastal Research, 2010, 26 (3): 503- 509
[48]   MOULTON M, DUSEK G, ELGAR S, et al Comparison of rip current hazard likelihood forecasts with observed rip current speeds[J]. Weather and Forecasting, 2017, 32 (4): 1659- 1666
doi: 10.1175/WAF-D-17-0076.1
[49]   DUSEK G, SEIM H A probabilistic rip current forecast model[J]. Journal of Coastal Research, 2013, 289 (4): 909- 925
[50]   自然资源部. 2018 年中国海洋经济统计公报[EB/OL]. [2019 -04 -11]. http://gi.mnr.gov.cn/201904/t20190411_2404774.html
[51]   解鸣晓, 张玮 近岸波生流运动三维数值模拟及验证[J]. 水科学进展, 2011, 22 (3): 391- 399
XIE Ming-xiao, ZHANG Wei 3D numerical modeling of nearshore wave-induced currents[J]. Advances in Water Science, 2011, 22 (3): 391- 399
[52]   胡日军, 吴建政, DONG P, 等 海岸沙坝横向迁移研究综述[J]. 水科学进展, 2016, 27 (5): 784- 791
HU Ri-jun, WU Jian-zheng, PING Dong, et al A review of cross-shore migration of nearshore sandbar[J]. Advances in Water Science, 2016, 27 (5): 784- 791
[53]   房克照, 尹继伟, 邹志利 单沟槽沙坝海岸的裂流实验研究[J]. 水动力学研究与进展A辑, 2013, 28 (3): 127- 133
FANG Ke-zhao, YIN Ji-wei, ZOU Zhi-li Experiment study on rip current or barred beach with a single channel[J]. Chinese Journal of Hydrodynamics A, 2013, 28 (3): 127- 133
[54]   房克照, 邹志利, 刘忠波 沙坝海岸上裂流的数值模拟[J]. 水动力学研究与进展, 2011, 26 (4): 479- 486
FANG Ke-zhao, ZOU Zhil-li, LIU Zhong-bo Numerical simulation of rip current generated on a barred beach[J]. Chinese Journal of Hydrodynamics, 2011, 26 (4): 479- 486
[55]   孟凡昌, 李本霞 裂流的研究综述[J]. 海洋预报, 2017, 34 (1): 82- 89
MENG Fan-chang, LI Ben-xia Review on the study of the rip current[J]. Marine Forecasts, 2017, 34 (1): 82- 89
doi: 10.11737/j.issn.1003-0239.2017.01.011
[56]   刘洁, 白玉川, 徐海珏 幂律流底泥的质量输移和流场[J]. 浙江大学学报: 工学版, 2016, 50 (9): 1798- 1805
LIU Jie, BAI Yu-chuan, XU Hai-jue Mass transport and flow field of power law muddy bed under surface waves[J]. Journal of Zhejiang University: Engineering Science, 2016, 50 (9): 1798- 1805
[57]   ZHENG J, ZHANG C, DEMIRBILEK Z, et al Numerical study of sandbar migration under wave-undertow interaction[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2014, 140 (2): 146- 159
doi: 10.1061/(ASCE)WW.1943-5460.0000231
[58]   SHI F, KIRBY J T, HARRIS J C, et al A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation[J]. Ocean Modelling, 2012, 43-44 (2): 36- 51
[1] Qi-jun LI,Yan-ming YAO,Jian-ge JIAO,Jin-xiong YUAN,Xin-yu ZHAO. Influence of mineral components of suspended sediment on salinity measurement[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1858-1866.
[2] SUN Zhi-lin, LU Mei, NIE Hui, HUANG Sen-jun. Analysis of storm surge during typhoons landing on Zhejiang coasts[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(2): 262-267.
[3] XIE Dong-feng, PAN Cun-hong, LU Hai-yan, WANG Li-hui, TANG Zi-wen. Study on propagation speed of tidal bore on Qiantang River[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(6): 1128-1134.
[4] CENG Jian, SUN Zhi-Lin, BO Cun-Hong, CHEN Gang. Long-periodic feature of runoff and its effect on riverbed in 
Qiantang estuary
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(8): 1584-1588.