|
|
Experimental study on lead and cadmium composite contaminated sand solidified and repaired by enzyme induced carbonate precipitation |
Yiyao JIANG1( ),Yanbo CHEN1,2,*( ),Yi BIAN1,Wenjie XU1,2,Liangtong ZHAN1,2,Han KE1,2,Qingyang WANG1 |
1. Institute of Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China 2. Center for Hypergravity Experimental and lnterdisciplinary, Zhejiang University, Hangzhou 310058, China |
|
|
Abstract The enzyme induced carbonate precipitation (EICP) technology was used to remediate the lead and cadmium composite contaminated sand. The influence of different urease types and mass concentrations on the solidification of lead and cadmium ions was analyzed through liquid reaction kinetics experiment. Then different concentrations of calcium chloride were used to solidify lead and cadmium composite contaminated sand. The leaching mass concentration of lead and cadmium ions and the unconfined compressive strength of the sand were measured. The remediation mechanisms of lead and cadmium composite contaminated sand treated by EICP was revealed combined with the microscopic testing. The results of liquid reaction kinetics experiments show that the crude sword beans urease contains rich amino acids and proteins, which can react with lead and cadmium ions and prevent urease deactivate. Increasing the urease mass concentration can enhance the urease activity and the immobilization rate of lead and cadmium ions. The results of soil remediation test indicate that EICP with crude sword bean ureases can form the heavy metal carbonate precipitation in the contaminated soil and induce calcium carbonate precipitation at the contact between sand particles. The leaching mass concentration of lead and cadmium decreases from the initial 12.652 mg/L and 42.530 mg/L to 0.022 mg/L and 0.117 mg/L respectively, and the unconfined compressive strength of treated sand can be up to 727 kPa after four treatments.
|
Received: 03 January 2024
Published: 11 February 2025
|
|
Fund: 浙江省“尖兵”“领雁”研发攻关计划资助项目(2022C03095);国家自然科学基金委员会基础科学中心资助项目(51988101);国家自然科学基金青年科学基金资助项目(52208373). |
Corresponding Authors:
Yanbo CHEN
E-mail: 22112188@zju.edu.cn;chenyanbo@zju.edu.cn
|
脲酶诱导矿化对铅、镉复合污染砂土固化 修复的试验研究
运用脲酶诱导矿化(EICP)技术,对铅、镉复合污染砂土开展固化修复试验研究. 通过液体反应动力学试验研究脲酶种类和质量浓度对Pb2+、Cd2+固化的影响,采用不同浓度的氯化钙对铅、镉复合污染砂土进行固化试验,通过测定铅、镉浸出质量浓度和无侧限抗压强度,结合微观测试,揭示EICP修复重金属的机制. 液体试验结果发现,剑豆粗提纯脲酶溶液含有丰富的氨基酸和蛋白质,可以与Pb2+、Cd2+发生络合并防止脲酶失活;增大脲酶质量浓度可以提高脲酶活性和金属固定率. 土体固化修复试验结果表明,利用该技术,能够在污染土中生成重金属碳酸盐沉淀,在土颗粒接触位置处生成碳酸钙. 在4遍处理后,铅、镉浸出质量浓度由初始的12.652、42.530 mg/L分别降低至0.022、0.117 mg/L,无侧限抗压强度可达727 kPa.
关键词:
脲酶诱导矿化(EICP),
剑豆粗提纯脲酶,
碳酸盐沉淀,
铅、镉复合污染砂土,
修复机制
|
|
[1] |
再协 2020年全国大、中城市固体废物污染环境防治年报[J]. 中国资源综合利用, 2021, 39 (1): 4 ZAI Xie Annual report on the prevention and control of environmental pollution by solid waste in large and medium cities in 2020[J]. China Comprehensive Utilization of Resources, 2021, 39 (1): 4
|
|
|
[2] |
LI X D, REN Y, JI S S, et al Erratum to: emission characteristics of hazardous components in municipal solid waste incinerator residual ash[J]. Journal of Zhejiang University: Science A, 2015, 16 (7): 596
doi: 10.1631/jzus.A14e0142
|
|
|
[3] |
陈云敏, 刘晓成, 徐文杰, 等 填埋生活垃圾稳定化特征与可开采性分析: 以我国第一代卫生填埋场为例[J]. 中国科学: 技术科学, 2019, 49 (2): 199- 211 CHEN Yunmin, LIU Xiaocheng, XU Wenjie, et al Analysis on stabilization characteristics and exploitability of landfilled municipal solid waste: case of a typical landfill in China[J]. Scientia Sinica Technologica, 2019, 49 (2): 199- 211
doi: 10.1360/N092018-00140
|
|
|
[4] |
生态环境部. 土壤环境质量标准: GB36600—2018 [S]. 北京: 中国标准出版社, 2018.
|
|
|
[5] |
FANG L, NIU Q, CHENG L, et al Ca-mediated alleviation of Cd2+ induced toxicity and improved Cd2+ biomineralization by Sporosarcina pasteurii[J]. Science of the Total Environment, 2021, 50 (38): 147627
|
|
|
[6] |
KANKIA H I, ABDULHAMID Y Determination of accumulated heavy metals in benthic invertebrates found in Ajiwa Dam, Katsina State, Northern Nigeria[J]. Archives of Applied Science Research, 2014, 6 (6): 80- 87
|
|
|
[7] |
LI C, ZHOU K, QIN W, et al A review on heavy metals contamination in soil: effects, sources, and remediation techniques[J]. Soil and Sediment Contamination, 2019, 28 (2): 1- 15
|
|
|
[8] |
高建明, 蔡宗平, 孙水裕, 等 不同有机酸电解液循环强化电动修复重金属污染土壤的研究[J]. 环境科学学报, 2023, 43 (9): 322- 332 GAO Jianming, CAI Zongping, SUN Shuiyu, et al Study on electrokinetic remediation of heavy metal contaminated soil by different organic acid electrolyte cycles[J]. Acta Scientiae Circumstantiae, 2023, 43 (9): 322- 332
|
|
|
[9] |
张会民, 吕家珑, 徐明岗, 等 土壤镉吸附的研究进展[J]. 中国土壤与肥料, 2006, 43 (6): 8- 12 ZHANG Huimin, LV Jialong, XU Minggang, et al Research progress of cadmium adsorption in soil[J]. Soil and Fertilizer Sciences in China, 2006, 43 (6): 8- 12
doi: 10.3969/j.issn.1673-6257.2006.06.002
|
|
|
[10] |
WANG L, CHENG W C, XUE Z F The effect of calcium source on Pb and Cu remediation using enzyme-induced carbonate precipitation[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10 (2): 849631
|
|
|
[11] |
CHEN Y B, GAO Y F, GUO H, et al Bio-improved hydraulic properties of sand treated by soybean urease induced carbonate precipitation and its application Part 1 water retention ability[J]. Transportation Geotechnics, 2021, 27 (24): 100489
|
|
|
[12] |
LIU L, CHEN Y, GAO Y, et al Effect of urease enrichment degree of multiple sources of urease on bio-cementation efficacy via enzyme-induced carbonate precipitation[J]. Canadian Geotechnical Journal, 2023, 60 (12): 1923- 1937
doi: 10.1139/cgj-2022-0416
|
|
|
[13] |
WANG L, CHENG W C, XUE Z F, et al Effects of the urease concentration and calcium source on enzyme-induced carbonate precipitation for lead remediation[J]. Frontiers in Chemistry, 2022, 10 (5): 892090
|
|
|
[14] |
边汉亮, 张旭钢, 韩一, 等 大豆脲酶对Zn~(2+)污染土的修复试验研究[J]. 工业建筑, 2022, 52 (11): 67- 70 BIAN Hanliang, ZHANG Xugang, HAN Yi, et al Experimental study on remediation of Zn~(2+) contaminated soil by soybean urease[J]. Industrial Construction, 2022, 52 (11): 67- 70
|
|
|
[15] |
NAM I H, ROH S B, PARK M J, et al Immobilization of heavy metal contaminated mine wastes using Canavalia ensiformis extract[J]. Catena, 2016, 44 (1): 53- 58
|
|
|
[16] |
KHODADADI T, JAVADI N, KRISHNAN V, et al Crude urease extract for biocementation[J]. Journal of Materials in Civil Engineering, 2020, 32 (12): 04020374
doi: 10.1061/(ASCE)MT.1943-5533.0003466
|
|
|
[17] |
GAO Y, HE J, TANG X, et al Calcium carbonate precipitation catalyzed by soybean urease as an improvement method for fine-grained soil[J]. Soils and Foundations, 2019, 59 (5): 1631- 1637
doi: 10.1016/j.sandf.2019.03.014
|
|
|
[18] |
SHU S, YAN B, GE B, et al Factors affecting soybean crude urease extraction and biocementation via enzyme-induced carbonate precipitation (EICP) for soil improvement[J]. Energies, 2022, 15 (15): 5566
doi: 10.3390/en15155566
|
|
|
[19] |
CHU J, IVANOV V, STABNIKOV V, et al. Microbial method for construction of an aquaculture pond in sand [C]// Bio-and Chemo-Mechanical Processes in Geotechnical Engineering: Géotechnique Symposium in Print 2013 . [S. l. ]: ICE Publishing, 2014: 215-219.
|
|
|
[20] |
生态环境部. 固体废物浸出毒性浸出方法水平振荡法[S]. 北京: 中国标准出版社, 2010.
|
|
|
[21] |
蒋疆, 王果, 方玲 土壤水溶解态有机物质与重金属的络合作[J]. 土壤与环境, 2001, 10 (1): 67- 71 JIANG Jiang, WANG Guo, FANG Ling Complexation of dissolved organic matter and heavy metals in soil water[J]. Soil and Environmental Science, 2001, 10 (1): 67- 71
|
|
|
[22] |
SWIFT R S, RATE A W, MCLAREN R G. Interactions of copper and cadmium with soil humic substances [M]// SWIFT R S, RATE A W, MCLAREN R G. Environmental Impacts of Soil Component Interactions. Boca Raton : CRC Press, 1995: 9.
|
|
|
[23] |
HENRISSAT B, DAVIES G Structural and sequence-based classification of glycoside hydrolases[J]. Current Opinion in Structural Biology, 1997, 7 (5): 637- 644
doi: 10.1016/S0959-440X(97)80072-3
|
|
|
[24] |
周静雷, 陈智 镉(Ⅱ)-半胱氨酸-组氨酸络合物研究[J]. 分析化学, 1992, 21 (8): 914- 917 ZHOU Jinglei, CHEN Zhi Study on cadmium (Ⅱ) -cysteine-histidine complex[J]. Chinese Journal of Analytical Chemistry, 1992, 21 (8): 914- 917
|
|
|
[25] |
MARTIN K, TIRKOLAEI H K, KAVAZANJIAN E Enhancing the strength of granular material with a modified enzyme-induced carbonate precipitation (EICP) treatment solution[J]. Construction and Building Materials, 2021, 35 (6): 121529
|
|
|
[26] |
ALMAJED A, TIRKOLAEI H K, KAVAZANJIAN JR E, et al Enzyme induced biocementated sand with high strength at low carbonate content[J]. Scientific Reports, 2019, 9 (1): 1135
doi: 10.1038/s41598-018-38361-1
|
|
|
[27] |
GUAN D, ZHOU Y, SHAHIN M A, et al Assessment of urease enzyme extraction for superior and economic bio-cementation of granular materials using enzyme-induced carbonate precipitation[J]. Acta Geotechnica, 2023, 18 (4): 2263- 2279
doi: 10.1007/s11440-022-01727-x
|
|
|
[28] |
KRISHNAN V, KHODADADI , MARTIN K, et al. Variability in the unconfined compressive strength of EICP-treated “standard” sand [J]. Journal of Geotechnical and Geoenvironmental Engineering , 2021, 147(4): 06021001.
|
|
|
[29] |
JONKERS H M, THIJSSEN A, MUYZER G, et al Application of bacteria as self-healing agent for the development of sustainable concrete[J]. Ecological Engineering, 2010, 36 (2): 230- 235
doi: 10.1016/j.ecoleng.2008.12.036
|
|
|
[30] |
POPA K, CECAL A, DROCHIOIU G, et al Saccharomyces cerevisiae as uranium bioaccumulating material: the influence of contact time, pH and anion nature[J]. Nukleonika, 2003, 48 (3): 121- 125
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|