Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (2): 319-331    DOI: 10.3785/j.issn.1008-973X.2025.02.010
    
Characteristic of stress concentration distribution in layered rock of tunnel under dynamic and static load
Yumin YANG1,2,3(),Nan JIANG2,3,*(),Yingkang YAO2,3,Chuanbo ZHOU1,Xianzhong MENG1,Moxi ZHAO1
1. Faculty of Engineering, China University of Geosciences, Wuhan 430074, China
2. State Key Laboratory of Precision Blasting, Jianghan University, Wuhan 430056, China
3. Hubei Key Laboratory of Blasting Engineering, Jianghan University, Wuhan 430056, China
Download: HTML     PDF(3623KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The similar test of physical model was designed aiming at the diversion tunnel project of layered surrounding rock of San Gavan Hydropower Station. LSDYNA was used to analyze the propagation characteristics and distribution characteristics of stress wave in layered rock mass by considering the static load, dynamic load and the dip angle. The sensitivity of different factors to the peak stress and secondary equilibrium stress of surrounding rock was analyzed by orthogonal test. A stress prediction model under the influence of multiple factors was established based on the dimensional analysis in order to determine the safety load control range of surrounding rock. Results showed that there was initial stress concentration in the surrounding rock of tunnel under high ground stress. The dynamic load had a significant impact on the value of stress concentration. The stress wave front was discontinuously distributed due to the influence of bedding. The dynamic and static loads were positively linearly correlated with the peak stress and secondary equilibrium stress. The peak stress and secondary equilibrium stress showed '∧' type distribution with the increase of dip angle. The sensitivity order of different factors to the peak stress and secondary equilibrium stress was dynamic load>static load>dip angle. The static load limit values were 0.731, 0.555, 0.479 and 0.456 MPa respectively, and the dynamic load limit values were 0.624, 0.523, 0.477 and 0.463 MPa respectively when the dip angle was 90°(0°), 75°(15°), 60°(30°) and 45°.



Key wordsdynamic and static load      layered rock mass      stress concentration      dimensional analysis      security control     
Received: 18 January 2024      Published: 11 February 2025
CLC:  U 45  
Fund:  国家自然科学基金资助项目(42102329,52478525);湖北省自然科学基金杰出青年资助项目(2024AFA092);湖北省重点研发计划资助项目(2021BAD004);武汉市重点研发计划资助项目(2024050802030155).
Corresponding Authors: Nan JIANG     E-mail: ym.yang@cug.edu.cn;jiangnan@cug.edu.cn
Cite this article:

Yumin YANG,Nan JIANG,Yingkang YAO,Chuanbo ZHOU,Xianzhong MENG,Moxi ZHAO. Characteristic of stress concentration distribution in layered rock of tunnel under dynamic and static load. Journal of ZheJiang University (Engineering Science), 2025, 59(2): 319-331.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.02.010     OR     https://www.zjujournals.com/eng/Y2025/V59/I2/319


动静荷载下层状围岩隧道应力集中分布特征

针对圣加旺水电站层状围岩引水隧道工程,设计物理模型相似试验,考虑不同的静荷载、动荷载及围岩倾角,采用LSDYNA分析层状岩体应力波的传播特性及分布特征. 通过正交试验分析不同因素对围岩峰值应力及二次平衡应力的敏感性,基于量纲分析建立多因素影响下应力预测模型,确定围岩安全荷载控制范围. 结果表明,高地应力条件下隧道围岩存在初始应力集中,动力扰动对应力集中数值的影响显著,应力波波阵面受层理的影响呈不连续分布. 动、静载与围岩峰值应力、二次平衡应力呈正线性相关,围岩峰值应力及二次平衡应力随倾角增大呈“∧”型分布,不同因素对围岩峰值应力及二次平衡应力的敏感性顺序均为动载>静载>倾角. 当围岩倾角为90°(0°)、75°(15°)、60°(30°)及45°时,静载极限值分别为0.731、0.555、0.479及0.456 MPa,动载极限值分别为0.624、0.523、0.477及0.463 MPa.


关键词: 动静荷载,  层状岩体,  应力集中,  量纲分析,  安全控制 
Fig.1 Geological profile of diversion tunnel
参数类型(l×w)/m2ρ/(g·cm?3)σc/MPah/cmF/MPa
实际值5.7×5.72.02491.911566、8
计算值0.57×0.572.0249.19115.60.6、0.8
试验值0.57×0.572.0078.90015.60.6、0.8
Tab.1 Model test parameter of static deformation of layered rock
Fig.2 Model test diagram of static deformation of layered rock
Fig.3 Distribution of strain in model experiment
Fig.4 Strain curve of left hance and left spandrel
Fig.5 Tunnel model of layered rock and calculation flow chart
Fig.6 Circumferential microstrain and error
Fig.7 Comparison of left hance’s strain curve between numerical simulation and model test
Fig.8 Blasting model
Fig.9 Relationship between peak particle equivalent stress and blast source distance
Fig.10 Equivalent diagram of dynamic load
工况Q1/MPaQ2/MPaθ/(°)
I0.84.045
II-10.64.545
II-20.84.545
II-31.04.545
II-41.24.545
II-51.44.545
III-10.80.545
III-20.81.545
III-30.82.545
III-40.83.545
III-50.84.545
IV-10.84.00
IV-20.84.015
IV-30.84.045
IV-40.84.075
IV-50.84.090
Tab.2 Numerical calculation condition of tunnel model of layered rock
Fig.11 Change cloud diagram of rock’s effective stress
Fig.12 Time travel curve of left haunch’s effective stress of in condition I
Fig.13 Change cloud diagram of rock’s effective stress
Fig.14 Distribution characteristics of secondary equilibrium stress of surrounding rock under different influencing factor
Fig.15 Relationship between stress and influencing factor
水平因素
Q1/MPaQ2/MPaθ/(°)A
10.60.501
20.81.5152
31.02.5453
41.23.5754
51.44.5905
Tab.3 Simulation factors and levels of orthogonal test
试验编号Q1/MPaQ2/MPaθ/(°)Af/MPafmax/MPa
10.60.5011.5411.668
20.61.54543.2566.592
30.62.59023.6235.612
40.63.51554.9667.487
50.64.57536.31310.732
60.80.59042.0462.179
70.81.51522.9763.381
80.82.57554.4456.223
90.83.5035.1538.151
100.84.54517.83410.960
111.00.57522.7743.190
121.01.5053.6414.311
131.02.54535.9179.519
141.03.59015.7628.857
151.04.51547.13911.851
161.20.54553.9284.122
171.21.59034.1244.464
181.22.51515.3716.895
191.23.57546.60310.103
201.24.5027.18911.050
211.40.51533.8454.614
221.41.57514.9055.309
231.42.5045.6066.795
241.43.54528.30613.270
251.44.59057.72314.720
Tab.4 Statistics of orthogonal test result
指标综合平均值Q1/MPaQ2/MPaθ/(°)A
fk13.9402.8274.6265.083
k24.4913.7804.8594.973
k35.0474.9925.8485.070
k45.4436.1585.0084.930
k56.0777.2404.6564.941
R2.1374.4131.2220.153
fmaxk16.4183.1556.3956.738
k26.1794.8116.8467.301
k37.5467.0098.8937.496
k47.3279.5747.1117.504
k58.94211.8637.1667.373
R2.5238.7082.4980.766
Tab.5 Range analysis
Fig.16 Visual distribution of marginal mean of each parameter
指标方差来源偏差平方和自由度均方和F显著性
fQ113.70843.42724.833**
Q262.835415.709113.833***
θ4.98941.2479.036*
A0.55040.138
fmaxQ123.94545.9865.527*
Q2247.236461.80957.072***
θ18.06944.5174.171×
A4.33241.083
Tab.6 Analysis of variance
影响因素量纲影响因素量纲
二次平衡应力fML?1T?2峰值应力fmaxML?1T?2
岩体密度ρML?3层间黏聚力φ
纵波波速vLT?1弹性模量EML?1T?2
静荷载Q1ML?1T?2动荷载Q2ML?1T?2
倾角θ层厚HL
Tab.7 Influencing factor and dimension
Fig.17 Failure characteristic of surrounding rock under different dynamic and static load
[1]   陈绍杰, 冯帆, 李夕兵, 等 复杂开采条件下深部硬岩板裂化破坏试验与模拟研究进展和关键问题[J]. 中国矿业大学学报, 2023, 52 (5): 868- 888
CHEN Shaojie, FENG Fan, LI Xibing, et al Research progress and key issues of laboratory test and numerical simulation for slabbing failure in hard rock under complex mining conditions[J]. Journal of China University of Mining and Technology, 2023, 52 (5): 868- 888
[2]   朱晔, 杨科, 李永亮, 等 不同煤柱尺寸条件下采动巷道层状底板稳定性分析与控制对策[J]. 采矿与安全工程学报, 2023, 40 (3): 467- 479
ZHU Ye, YANG Ke, LI Yongliang, et al Stability analysis and control strategy of layered floor of mining roadway under different coal pillar size[J]. Journal of Mining and Safety Engineering, 2023, 40 (3): 467- 479
[3]   LV Z T, YUAN S Q, LIN H Analytical stress solution for cold region tunnels with unequal ground stress and support delay under different frost heave conditions of surrounding rock[J]. Gold Regions Science and Technology, 2023, 206: 103742
doi: 10.1016/j.coldregions.2022.103742
[4]   LYU Z T, XIA C C, LIN W P Analytical solution of frost heaving force and stress distribution in cold region tunnels under non-axisymmetric stress and transversely isotropic frost heave of surrounding rock[J]. Gold Regions Science and Technology, 2020, 178: 103117
doi: 10.1016/j.coldregions.2020.103117
[5]   涂敏, 赵庆冲, 张向阳, 等 不同加载速率下煤岩动力破坏特征实验研究[J]. 采矿与安全工程学报, 2023, 40 (5): 1031- 1042
TU Min, ZHAO Qingchong, ZHANG Xiangyang, et al Experimental study on dynamic failure characteristics of coal and rock under different loading rates[J]. Journal of Mining and Safety Engineering, 2023, 40 (5): 1031- 1042
[6]   王伟, 张宽, 曹亚军, 等 层状千枚岩各向异性力学特性与脆性评价研究[J]. 岩土力学, 2023, 44 (4): 975- 989
WANG Wei, ZHANG Kuan, CAO Yajun, et al Anisotropic mechanical properties and brittleness evaluation of layered phyllite[J]. Rock and Soil Mechanics, 2023, 44 (4): 975- 989
[7]   张传庆, 黄书岭, 周辉, 等 基于地应力水平评价的围岩潜在破坏模式研究[J]. 岩石力学与工程学报, 2021, 40 (Suppl.1): 2851- 2860
ZHANG Chuanqing, HUANG Shuling, ZHOU Hui, et al Study on potential failure modes of surrounding rock mass based on evaluation of geostress level[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40 (Suppl.1): 2851- 2860
[8]   王孝健, 苏生瑞, 施怡, 等 高地应力环境下地下工程围岩变形破坏的地质力学模式分析[J]. 公路, 2014, 59 (4): 244- 250
WANG Xiaojian, SU Shengrui, SHI Yi, et al Geomechanical model analysis of deformation and failure of surrounding rock in underground engineering under high ground stress environment[J]. Highway, 2014, 59 (4): 244- 250
[9]   魏晨慧, 朱万成, 白羽, 等 动载下层状复合岩石能量耗散及断裂特征研究[J]. 工程科学学报, 2016, 38 (1): 19- 25
WEI Chenhui, ZHU Wancheng, BAI Yu, et al Numerical simulation of jointed rock mass blasting under different in-site stress conditions[J]. Chinese Journal of Engineering, 2016, 38 (1): 19- 25
[10]   章诚, 杨建华, 姚池, 等 深埋隧洞连续爆破开挖围岩应力演化规律[J]. 长江科学院院报, 2018, 35 (12): 108- 112
ZHANG Cheng, YANG Jianhua, YAO Chi, et al Stress evolution of surrounding rocks under continuous blasting of deep-buried tunnel[J]. Journal of Changjiang River Scientific Research Institute, 2018, 35 (12): 108- 112
[11]   蒙国往, 张景龙, 吴波, 等 循环爆破荷载作用下小净距隧道围岩累积损伤特性研究[J]. 爆破, 2021, 38 (4): 52- 60
MENG Guowang, ZHANG Jinglong, WU Bo, et al Research on cumulative damage characteristics of surrounding rock of small-clear distance tunnel under cycle blasting load[J]. Blasting, 2021, 38 (4): 52- 60
[12]   李杨, 王雁冰, 付代睿, 等 动载下层状复合岩石能量耗散及断裂特征研究[J]. 工程科学学报, 2023, 45 (11): 1833- 1846
LI Yang, WANG Yanbing, FU Dairui, et al Energy dissipation and fracture characteristics of composite layered rock under dynamic load[J]. Chinese Journal of Engineering, 2023, 45 (11): 1833- 1846
[13]   周喻, 邹世卓, 高永涛, 等 动载下层状岩体力学特性试验与数值模拟[J]. 哈尔滨工业大学学报, 2023, 55 (6): 93- 109
ZHOU Yu, ZOU Shizhuo, GAO Yongtao, et al Test and numerical simulation for mechanical properties of laminated rock mass under dynamic loading[J]. Journal of Harbin Institute of Technology, 2023, 55 (6): 93- 109
[14]   解北京, 栾铮, 刘天乐, 等 静水压下原生组合煤岩动力学破坏特征[J]. 煤炭学报, 2023, 48 (5): 2513- 2167
XIE Beijing, LUAN Zheng, LIU Tianle, et al Dynamic failure characteristics of primary coal-rock combination under hydrostatic pressure[J]. Journal of China Coal Society, 2023, 48 (5): 2513- 2167
[15]   马泗洲, 刘科伟, 杨家彩, 等 初始应力下岩体爆破损伤特性及破裂机理[J]. 爆炸与冲击, 2023, 43 (10): 152- 173
MA Sizhou, LIU Kewei, YANG Jiacai, et al Blast-induced damage characteristics and fracture mechanism of rock mass under initial stress[J]. Explosion and Shock Waves, 2023, 43 (10): 152- 173
[16]   任松, 欧阳汛, 姜德义, 等 软硬互层隧道稳定性分析及初期支护优化[J]. 华中科技大学学报: 自然科学版, 2017, 41 (Suppl.2): 320- 328
REN Song, OUYANG Xun, JIANG Deyi, et al Stability analysis and optimization of primary support on tunnel excavation with soft-hard interbed rock[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2017, 41 (Suppl.2): 320- 328
[17]   JI L, ZHOU C B, LU S W, et al Modeling study of cumulative damage effects and safety criterion of surrounding rock under multiple full-face blasting of a large cross-section tunnel[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 147: 104882
doi: 10.1016/j.ijrmms.2021.104882
[18]   张玉成, 杨光华, 胡海英, 等 爆破振动对建(构)筑物影响数值计算模型及安全判据的研究[J]. 土木工程学报, 2015, 48 (Suppl.2): 22- 29
ZHANG Yucheng, YANG Guanghua, HU Haiying, et al Study on numerical model and safety criterion of the influence of blasting vibration on buildings and structures[J]. China Civil Engineering Journal, 2015, 48 (Suppl.2): 22- 29
[19]   吉凌, 周传波, 张波, 等 大断面隧道爆破作用下围岩动力响应特性与损伤效应研究[J]. 铁道学报, 2021, 43 (7): 161- 168
JI Ling, ZHOU Chuanbo, ZHANG Bo, et al Study on dynamic response and damage effect of surrounding rock in large tunnel under blasting excavation[J]. Journal of the China Railway Society, 2021, 43 (7): 161- 168
[20]   姚强, 杨兴国, 陈兴泽, 等 大型地下厂房开挖爆破振动动力响应数值模拟[J]. 振动与冲击, 2014, 33 (6): 66- 70
YAO Qiang, YANG Xingguo, CHEN Xingze, et al Numerical simulation of dynamic response of large underground powerhouse subjected to blasting vibration[J]. Journal of Vibration and Shock, 2014, 33 (6): 66- 70
[21]   RAKISHEV B, RAKISHEVA Z B. Basic characteristics of the stages of rock massif destruction by explosive crushing [C] // Asia-Pacific Symposium on Blasting Techniques . Kunming: Metallurgical Industry Press, 2011.
[22]   穆朝民, 齐娟 柱状装药爆破应力分布的研究[J]. 振动与冲击, 2010, 29 (10): 91- 94
MU Chaomin, QI Juan Distribution of stress caused by column charge blasting[J]. Journal of Vibration and Shock, 2010, 29 (10): 91- 94
[1] Lifu DAI,Daosheng LING,Jianjing ZHENG,Changyu SHI. Experimental study on scaling laws of sphere by low-speed oblique impact cratering[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(4): 828-837.