Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (4): 828-837    DOI: 10.3785/j.issn.1008-973X.2024.04.018
    
Experimental study on scaling laws of sphere by low-speed oblique impact cratering
Lifu DAI1,2(),Daosheng LING1,3,Jianjing ZHENG1,3,*(),Changyu SHI1
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2. National Enterprise Technology Center, CCCC Second Harbour Engineering Limited Company, Wuhan 430040, China
3. Center for Hypergravity Experiment and Interdisciplinary Research, Zhejiang University, Hangzhou 310058, China
Download: HTML     PDF(2724KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

By designing a low-speed impact test device for sphere launch, the cratering experiments of sphere impacting dry sand target at different angles were carried out systematically. The influence of impact speed and angle on crater shapes was quantitatively analyzed. The crating process and mechanism of low-speed oblique impact of spheres on dry sand target were analyzed qualitatively, and the scaling laws of cratering under low-speed oblique impact conditions were modified. The applicability of the scaling laws under different impact conditions and its application in astronomy were discussed. Experimental results verify that the crater shape increases with the increase of impact speed, and the crater length and volume increase with the increase of impact angle. The crater width first decreases and then increases with the increase of impact angle, while the crater depth first increases and then decreases with the increase of impact angle. The cavity volume was scaled by parameters such as impact angle, impact speed, sphere diameter, density of sphere and gravity. The dissipative impact process was influenced by both the momentum and energy in the low-speed oblique impact cratering.



Key wordscratering effect      low-speed oblique impact      dimensional analysis      scaling law      experimental study     
Received: 03 April 2023      Published: 27 March 2024
CLC:  O 303  
Fund:  国家自然科学基金基础科学中心项目(51988101).
Corresponding Authors: Jianjing ZHENG     E-mail: 22012013@zju.edu.cn;zhengjianjing@zju.edu.cn
Cite this article:

Lifu DAI,Daosheng LING,Jianjing ZHENG,Changyu SHI. Experimental study on scaling laws of sphere by low-speed oblique impact cratering. Journal of ZheJiang University (Engineering Science), 2024, 58(4): 828-837.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.04.018     OR     https://www.zjujournals.com/eng/Y2024/V58/I4/828


球体低速斜撞击成坑规律试验研究

通过设计球体发射低速撞击试验装置,系统开展不同角度条件下球体撞击干砂靶成坑试验,定量分析撞击速度、角度对撞击坑型的影响,定性分析球体低速斜撞击干砂靶的成坑过程及机理,修正低速斜撞击条件下的成坑相似律. 讨论所修正的相似律在不同撞击条件下的适用性及其在天文学上的应用. 试验结果表明,坑型随撞击速度的增加而增大;坑长、坑体积随撞击角度增加而增加,坑宽随撞击角度的增加先减小再增加,坑深随撞击角度的增加先增加后减小;成坑体积可由撞击角度、撞击速度、球体尺寸、球体密度、重力参数进行缩放得到;低速斜撞击成坑过程中动量和能量共同影响耗散冲击过程.


关键词: 成坑效应,  低速斜撞击,  量纲分析,  相似律,  试验研究 
Fig.1 Schematic illustration of low-speed impact test device for sphere launch
试验装置试验材料规格参数
发射系统球形弹丸表面光滑,材质为304不锈钢;直径Di=18 mm,中间有3 mm通孔;质量mi = 23.093 g
PVC透明硬管外径为25 mm,壁厚为2.5 mm;长度分别为1.0、1.5、2.0 m,与球体的摩擦系数约为0.01
涤纶纤维直径为0.2 mm,抗拉强度≥500 MPa
固定支架角度可调整,不锈钢材料
砂靶系统长方体开口容器木制;内径尺寸为480 mm×280 mm×190 mm,壁厚为10 mm
福建标准砂真实密度$ {\rho _t} = $2.62×103 kg/m3,内摩擦角$\theta = $39°,颗粒级配见文献[13]
测量系统角度仪型号为JZC-B2,测量范围为?130°~ 130°,测量精度为±1°
手持式三维激光扫描仪型号为SIMSCAN30,最高精度为0.020 mm,最大扫描面幅为410 mm×400 mm
高速相机型号为Photron,MH6;帧率为2640 帧/s;分辨率为1 280×600
Tab.1 Material and specification parameters of low-speed impact test device for sphere launch
Fig.2 Schematic illustration of impact speed calculation process
$\varphi $/(°)L/mn$\varphi $/(°)L/mn
451.05701.55
1.552.05
2.05751.05
501.051.55
1.552.05
2.05900.52
551.050.62
1.550.72
2.050.82
601.050.92
1.551.02
2.051.12
651.051.22
1.551.32
2.051.42
701.051.52
Tab.2 Low-speed impact experimental conditions for sphere launch
Fig.3 Cratering process at different impact angles
Fig.4 Impact crater shapes color depth map at different impact angles
Fig.5 Impact crater shape contour map ($\varphi = {45^ \circ },\; {v_i} = 3.85{\text{ m/s}}$)
Fig.6 Schematic illustrations of crater parameters and coordinate system definition
Fig.7 Vertical impact YOZ plane crater profile at different impact speeds
Fig.8 Variation curve of crater parameters with impact speed
Fig.9 XOZ plane crater profile at different impact angles
Fig.10 YOZ plane crater profile at different impact angles
Fig.11 Variation curve of crater parameters with impact angle
Fig.12 Schematic illustration of XOZ section of impact cratering mechanism
Fig.13 Schematic diagram of target particle movement in semi-empirical Z model
Fig.14 Variation curve of length-to-width and depth-to-width ratios of cratering shapes with impact angle
Fig.15 Relationship between impact energy and crater size
$\varphi $/(°)k$\varphi $/(°)k
坑长坑体积坑长坑体积
450.300.87650.350.90
500.340.81700.390.88
550.350.74750.390.88
600.351.07900.180.48
Tab.3 Exponential quantity of impact energy and crater parameters
Fig.16 Scaling law relation of crater volume
Fig.17 Scaling law relation applicability for different experiments
[1]   CHESLEY S R, FRENCH A S, DAVIS A B, et al Trajectory estimation for particles observed in the vicinity of (101955) Bennu[J]. Journal of Geophysical Research: Planets, 2020, 125 (9): e2019JE006363
doi: 10.1029/2019JE006363
[2]   MIYAMOTO H, YANO H, SCHEERES D J, et al Regolith migration and sorting on asteroid Itokawa[J]. Science, 2007, 316 (5827): 1011- 1014
doi: 10.1126/science.1134390
[3]   WALSH K J, JAWIN E R, BALLOUZ R-L, et al Craters, boulders and regolith of (101955) Bennu indicative of an old and dynamic surface[J]. Nature Geoscience, 2019, 12: 242- 246
doi: 10.1038/s41561-019-0326-6
[4]   MELOSH H J. Impact cratering: a geologic process [M]. Oxford: Clarendon Press, 1989.
[5]   SCHMIDT R M. Meteor crater: energy of formation-implications of centrifuge scaling [C]// Lunar and Planetary Science Conference Proceedings . Houston: [s. n.], 1980, 11: 2099–2128.
[6]   HOLSAPPLE K A, SCHMIDT R M On the scaling of crater dimensions: 2. impact processes[J]. Journal of Geophysical Research: Solid Earth, 1982, 87 (B3): 1849- 1870
doi: 10.1029/JB087iB03p01849
[7]   HOUSEN K R, SCHMIDT R M, HOLSAPPLE K A Crater ejecta scaling laws: fundamental forms based on dimensional analysis[J]. Journal of Geophysical Research: Solid Earth, 1983, 88 (B3): 2485- 2499
doi: 10.1029/JB088iB03p02485
[8]   SCHMIDT R M, HOUSEN K R Some recent advances in the scaling of impact and explosion cratering[J]. International Journal of Impact Engineering, 1987, 5 (1-4): 543- 560
doi: 10.1016/0734-743X(87)90069-8
[9]   YAMAMOTO S, WADA K, OKABE N, et al Transient crater growth in granular targets: an experimental study of low velocity impacts into glass sphere targets[J]. Icarus, 2006, 183 (1): 215- 224
doi: 10.1016/j.icarus.2006.02.002
[10]   TSUJIDO S, ARAKAWA M, SUZUKI A I, et al Ejecta velocity distribution of impact craters formed on quartz sand: effect of projectile density on crater scaling law[J]. Icarus, 2015, 262: 79- 92
doi: 10.1016/j.icarus.2015.08.035
[11]   DE VET S J, DE BRUYN J R Shape of impact craters in granular media[J]. Physical Review E, 2007, 76: 041306
doi: 10.1103/PhysRevE.76.041306
[12]   TAKIZAWA S, KATSURAGI H Scaling laws for the oblique impact cratering on an inclined granular surface[J]. Icarus, 2020, 335: 113409
doi: 10.1016/j.icarus.2019.113409
[13]   周燕国, 李永刚, 丁海军, 等 砂土液化后再固结体变规律表征与离心模型试验验证[J]. 岩土工程学报, 2014, 36 (10): 1838- 1845
ZHOU Yanguo, LI Yonggang, DING Haijun, et al Characterization of reconsolidation volumetric strain of liquefied sand and validation by centrifuge model tests[J]. Chinese Journal of Geotechnical Engineering, 2014, 36 (10): 1838- 1845
doi: 10.11779/CJGE201410011
[14]   SEGUIN A, BERTHO Y, GONDRET P Influence of confinement on granular penetration by impact[J]. Physical Review E, 2008, 78: 010301
[15]   MAXWELL D E. Simple Z model for cratering, ejection, and the overturned flap [M]// RODDY D J, PEPIN R O, MERRILL R B. Impact and explosion cratering: planetary and terrestrial implications . New York: Pergamon Press, 1977.
[16]   ASCHAUER J, KENKMANN T Impact cratering on slopes[J]. Icarus, 2017, 290: 89- 95
doi: 10.1016/j.icarus.2017.02.021
[17]   GAULT D E, SONETT C P. Laboratory simulation of pelagic asteroidal impact: atmospheric injection, benthic topography, and the surface wave radiation field [M]// SILVER L T, SCHULTZ P H. Geological implications of impacts of large asteroids and comets on the Earth . [S.l.]: Geological Society of America, 1982.
[18]   RICHARDSON J E, MELOSH H J, GREENBERG R J, et al The global effects of impact-induced seismic activity on fractured asteroid surface morphology[J]. Icarus, 2005, 179 (2): 325- 349
doi: 10.1016/j.icarus.2005.07.005
[19]   WALSH A M, HOLLOWAY K E, HABDAS P, et al Morphology and scaling of impact craters in granular media[J]. Physical Review Letters, 2003, 91: 104301
doi: 10.1103/PhysRevLett.91.104301
[20]   NEFZAOUI E, SKURTYS O Impact of a liquid drop on a granular medium: inertia, viscosity and surface tension effects on the drop deformation[J]. Experimental Thermal and Fluid Science, 2012, 41: 43- 50
doi: 10.1016/j.expthermflusci.2012.03.007
[21]   CHAPMAN C R, MCKINNON W B. Cratering of planetary satellites [R]. Tucson: University of Arizona Press, 1986.
[22]   HOUSEN K R, HOLSAPPLE K A Ejecta from impact craters[J]. Icarus, 2011, 211 (1): 856- 875
doi: 10.1016/j.icarus.2010.09.017
[23]   WÜNNEMANN K, COLLINS G S, MELOSH H J A strain-based porosity model for use in hydrocode simulations of impacts and implications for transient crater growth in porous targets[J]. Icarus, 2006, 180 (2): 514- 527
doi: 10.1016/j.icarus.2005.10.013
[24]   ELBESHAUSEN D, WÜNNEMANN K, COLLINS G S Scaling of oblique impacts in frictional targets: implications for crater size and formation mechanisms[J]. Icarus, 2009, 204 (2): 716- 731
doi: 10.1016/j.icarus.2009.07.018
[1] JIN Wei-liang, WANG Yi. Experimental study on mechanics behaviors of reinforced concrete beams under simultaneous chloride attacks and sustained load[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(2): 221-227.
[2] GONG Shun-feng, XIA Qian, JIN Wei-liang. Investigation on damage mechanism of RC
column under close-in explosion
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(8): 1405-1410.