1. Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing 210098, China 2. Jiangsu Research Center for Geotechnical Engineering Technology, Hohai University, Nanjing 210098, China 3. Design and Research Institute of the Second Construction Limited Company, China Construction Eighth Bureau, Jinan 250014, China
Orthogonal experiments of ultrasonic irradiation time (0-30 min) and ultrasonic power intensity (0-0.8 W/cm3) were conducted using ultrasound (20 kHz) in order to analyze ultrasonic effect on Sporosarcina pasteurii and its ability to induce calcium carbonate. Aqueous solution tests and sand column tests based on microbially induced carbonate precipitation were conducted using ultrasound-treated bacteria solution. Urease activity, OD600, distribution parameters of bacterial cells, amount of microbially induced CaCO3 and unconfined compressive strength of treated sand columns were measured. Effects of ultrasonic irradiation time, ultrasonic power intensity and ultrasonic energy intensity on CaCO3 amount were analyzed. Results show that ultrasonic irradiation can trigger physiological enhancement reaction of bacteria and improve the urease activity of bacterial liquid. Ultrasonic irradiation can effectively improve the ability of bacteria to induce CaCO3 with ultrasonic energy intensity of about 8 W·min/cm3. After bacterial solution was irradiated by ultrasound with the optimal irradiation strategy (ultrasonic power intensity of 0.4 W/cm3, treatment time of 20 minutes), CaCO3 amount in aqueous solution tests and sand column tests can be increased by 28.5% and 35.6% respectively. Unconfined compressive strength of MICP-treated sand sample was 1.25 MPa, which was increased by 91.6% than control samples.
Zhi-ming LIU,Jie PENG,Jie LI,En-run SONG. Experimental study on improving effect of microorganism solidifying sand by ultrasonic. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1411-1417.
Tab.1Design of ultrasonic irradiation treatment tests
Fig.2Particle distribution parameters of bacterial solution
Fig.3Relationship between OD600 of bacterial solution and ultrasonic power intensity
Fig.4Relationship between urease activity parameters and irradiation time
Fig.5CaCO3 production in aqueous solution tests
EI/(W·min·cm?3)
试验组别
EI/(W·min·cm?3)
试验组别
2
A1
12
B3,C2
4
A2,B1
16
D2
6
A3,C1
18
C3
8
B2,D1
24
D3
Tab.2Ultrasonic energy intensity of each test
Fig.6Urease activity and OD600 varied with ultrasonic energy intensity
Fig.7Relationship between CaCO3 content and ultrasonic energy intensity
Fig.8Ultrasonic power intensity and proportion of bacterial activity of bacteaial liquid used in sand column treatment tests
Fig.9Results of sand column tests
[1]
BOQUET E, BORONAT A, RAMOS-CORMENZANA A Production of calcite (calcium carbonate) crystals by soil bacteria is a general phenomenon[J]. Nature, 1973, 246: 527- 529
doi: 10.1038/246527a0
[2]
LIAN J, XU H, HE X, et al Biogrouting of hydraulic fill fine sands for reclamation projects[J]. Marine Georesources and Geotechnology, 2018, 37 (8): 1- 11
[3]
彭劼, 冯清鹏, 孙益成 温度对微生物诱导碳酸钙沉积加固砂土的影响研究[J]. 岩土工程学报, 2018, 40 (6): 1048- 1055 PENG Jie, FENG Qing-peng, SUN Yi-cheng Experimental research on influence of temperature on MICP-treated soil[J]. Chinese Journal of Geotechnical Engineering, 2018, 40 (6): 1048- 1055
doi: 10.11779/CJGE201806010
[4]
CHENG L, SHAHIN M A Urease active bioslurry: a novel soil improvement approach based on microbially induced carbonate precipitation[J]. Canadian Geotechnical Journal, 2016, 53 (9): 1376- 1385
doi: 10.1139/cgj-2015-0635
[5]
MALEKI M, EBRAHIMI S, ASADZADEH F, et al Performance of microbial-induced carbonate precipitation on wind erosion control of sandy soil[J]. International Journal of Environmental Science and Technology, 2016, 13 (3): 937- 944
doi: 10.1007/s13762-015-0921-z
[6]
徐晶 基于微生物矿化沉积的混凝土裂缝修复研究进展[J]. 浙江大学学报: 工学版, 2012, 46 (11): 2020- 2027 XU Jing Research process of concrete crack remediation based on microbially mineral precipitation[J]. Journal of Zhejiang University: Engineering Science, 2012, 46 (11): 2020- 2027
[7]
DEJONG J T, SOGA K, KAVAZANJIAN E, et al Biogeochemical processes and geotechnical applications: progress, opportunities and challenges[J]. Geotechnique, 2013, 63 (4): 287- 301
doi: 10.1680/geot.SIP13.P.017
[8]
VAN PAASSEN L, HARKES M P, VAN ZWIETEN G A, et al. Scale up of BioGrout: a biological ground reinforcement method [C] // 17th International Conference on Soil Mechanics and Geotechnical Engineering. Alexandria, Egypt: IOS, 2009: 2328-2333.
[9]
GOROSPE C M, HAN S H, KIM S G, et al Effects of different calcium salts on calcium carbonate crystal formation by Sporosarcina pasteurii KCTC 3558[J]. Biotechnology and Bioprocess Engineering, 2013, 18 (5): 903- 908
doi: 10.1007/s12257-013-0030-0
[10]
KAUR G, DHAMI N K, GOYAL S, et al Utilization of carbon dioxide as an alternative to urea in biocementation[J]. Construction and Building Materials, 2016, 123: 527- 533
doi: 10.1016/j.conbuildmat.2016.07.036
[11]
CHENG L, CORD-RUWISCH R Selective enrichment and production of highly urease active bacteria by non-sterile (open) chemostat culture[J]. Journal of Industrial Microbiology and Biotechnology, 2013, 40 (10): 1095- 1104
doi: 10.1007/s10295-013-1310-6
[12]
KERIS-SEN U D, SEN U, SOYDEMIR G, et al An investigation of ultrasound effect on microalgal cell integrity and lipid extraction efficiency[J]. Bioresource Technology, 2014, 152 (1): 407- 413
[13]
ZHOU Q, ZHANG P Y, ZHANG G M Enhancement of cell production in photosynthetic bacteria wastewater treatment by low-strength ultrasound[J]. Bioresource Technology, 2014, 161: 451- 454
doi: 10.1016/j.biortech.2014.03.106
[14]
DAI C, WANG B, DUAN C, et al Low ultrasonic stimulates fermentation of riboflavin producing strain Ecemothecium ashbyii[J]. Colloids and Surfaces B: Biointerfaces, 2003, 30 (1): 37- 41
[15]
高大维, 雷德柱, 高文宏, 等 多波形超声波辐照对啤酒酵母细胞生长的影响[J]. 华南理工大学学报: 自然科学版, 2000, 28 (7): 36- 39 GAO Da-wei, LEI De-zhu, GAO Wen-hong, et al Effects of multi-waveform ultrasound irradiation on the growth of Saccharomyces Cerevisiae [J]. Journal of South China University of Technology: Natural Science Edition, 2000, 28 (7): 36- 39
[16]
LIU W S, YANG C Y, FANG T J Strategic ultrasound-induced stress response of lactic acid bacteria on enhancement of beta-glucosidase activity for bioconversion of isoflavones in soymilk[J]. Journal of Microbiological Methods, 2018, 148: 145- 150
doi: 10.1016/j.mimet.2018.04.006
[17]
YAN Y X, DING J Y, GAO J L Improvement of activated sludge bacteria growth by low intensity ultrasound[J]. IOP Conference Series: Earth and Environmental Science, Beijing, China: IOP Publishing, 2016, 39 (1): 012006
[18]
CHISTI Y Sonobioreactors: using ultrasound for enhanced microbial productivity[J]. Trends in Biotechnology, 2003, 21 (2): 89- 93
doi: 10.1016/S0167-7799(02)00033-1
[19]
DEJONG J T, MORTENSEN B M, MARTINEZ B C, et al Bio-mediated soil improvement[J]. Ecological Engineering, 2010, 36 (2): 197- 210
doi: 10.1016/j.ecoleng.2008.12.029
[20]
ZHAO Q, LI L, LI C, et al Factors affecting improvement of engineering properties of micp-treated soil catalyzed by bacteria and urease[J]. Journal of Materials in Civil Engineering, 2014, 26 (12): 04014094
doi: 10.1061/(ASCE)MT.1943-5533.0001013
[21]
WHIFFIN V S. Microbial CaCO precipitation for the production of biocement [D]. Perth, Australia: Murdoch University, 2004.
[22]
RASOL R M, NOOR N M, YAHAYA N, et al Combination effects of ultrasound wave and biocide treatment on the growth of sulfate reducing bacteria (SRB)[J]. Desalination and Water Treatment, 2014, 52 (19-21): 3637- 3646
doi: 10.1080/19443994.2013.855005
[23]
彭劼, 何想, 刘志明, 等 低温条件下微生物诱导碳酸钙沉积加固土体的试验研究[J]. 岩土工程学报, 2016, 38 (10): 1769- 1774 PENG Jie, HE Xiang, LIU Zhi-ming, et al Experimental research on influence of low temperature on MICP-treated soil[J]. Chinese Journal of Geotechnical Engineering, 2016, 38 (10): 1769- 1774
doi: 10.11779/CJGE201610004
[24]
闫怡新, 刘红 低强度超声波强化污水生物处理机制[J]. 环境科学, 2006, 27 (4): 647- 650 YAN Yi-xin, LIU Hong Mechanism of low intensity ultrasound enhanced biological treatment of wastewater[J]. Environmental Science, 2006, 27 (4): 647- 650
doi: 10.3321/j.issn:0250-3301.2006.04.008
[25]
DOULAH M S Mechanism of disintegration of biological cells in ultrasonic cavitation[J]. Biotechnology and Bioengineering, 1977, 19 (5): 649- 660
doi: 10.1002/bit.260190504