Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (6): 1100-1110    DOI: 10.3785/j.issn.1008-973X.2023.06.005
    
Experimental study on solidification parameters of Yellow River silt based on bacteria-induced and enzyme-induced methods
Yu-ke WANG1(),Tian-cai CAO1,Ying-bin SONG2,*(),Jing-gan SHAO3,Xiang YU1,Bo-wen DONG4
1. College of Water Conservancy Engineering, Zhengzhou University, Zhengzhou 450001, China
2. Yellow River Institute of Hydraulic Research, Yellow River Conservancy Commission, Zhengzhou 450003, China
3. Henan Jiaoyuan Engineering Technology Limited Company, Zhengzhou 451460, China
4. Henan Communications Planning and Design Institute Limited Company, Zhengzhou 451450, China
Download: HTML     PDF(6934KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to improve the quality of the Yellow River silt and popularize its application in subgrade engineering, the effects of microbially induced carbonate precipitation (MICP) and enzyme-induced carbonate precipitation (EICP) technology on the solidification of the Yellow River silt were compared and analyzed, based on the emerging biomineralization technology, considering the cement solution concentration and grouting times, using the unconfined compressive strength (UCS) test, mass fraction test of calcium carbonate and scanning electron microscope (SEM). Test results showed that the extraction efficiency of soybean urease was optimal when the mass concentration of soybean flour was 40 g/L. The highest activity of bacteria and soybean urease was obtained when the pH of the medium solution was 8. With a volume ratio of 1∶1 between the biological enzyme and the caking solution, urea reacted sufficiently with calcium chloride. The compressive strength of the Yellow River silt samples can be improved by increasing the cement solution concentration and the grouting times, but the influences of the two are different, and the cement solution concentration plays a leading role. The maximum compressive strength of the specimens cured by the EICP and MICP technology was 954.65 kPa and 674.98 kPa respectively, at the cement solution concentration of 1 mol/L and the grouting times of 8. The calcium carbonate generated in the Yellow River silt sample has a linear relationship with the compressive strength. The maximum mass fraction of calcium carbonate in the sample cured by EICP and MICP technology was 24.05% and 21.35% respectively. Calcite calcium carbonate is attached to the surface of the Yellow River silt particles and the pores between the particles, and the mass fraction of the calcium carbonate gradually decreases from top to bottom in the sample. Analysis of macroscopic and microscopic views indicates that the EICP is more suitable for solidifying the Yellow River silt than the MICP.



Key wordsYellow River silt      microbially induced carbonate precipitation (MICP)      enzyme-induced carbonate precipitation (EICP)      compressive strength      calcium carbonate     
Received: 16 July 2022      Published: 30 June 2023
CLC:  TU 411  
Fund:  国家自然科学基金资助项目(52178369,52109140,U2243222);河南省自然科学基金资助项目 (202300410424)
Corresponding Authors: Ying-bin SONG     E-mail: ykewang@163.com;2314231473@qq.com
Cite this article:

Yu-ke WANG,Tian-cai CAO,Ying-bin SONG,Jing-gan SHAO,Xiang YU,Bo-wen DONG. Experimental study on solidification parameters of Yellow River silt based on bacteria-induced and enzyme-induced methods. Journal of ZheJiang University (Engineering Science), 2023, 57(6): 1100-1110.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.06.005     OR     https://www.zjujournals.com/eng/Y2023/V57/I6/1100


基于菌促方法和酶促方法的黄河泥沙加固参数试验研究

为了改善黄河泥沙的质量和推广其在路基工程中的应用,基于新兴的生物矿化技术,考虑胶结液浓度和灌浆次数,采用无侧限抗压强度(UCS)试验、碳酸钙质量分数测试、扫描电镜(SEM)等方式,对比分析微生物诱导碳酸钙沉积(MICP)与酶诱导碳酸钙沉积(EICP)技术固化黄河泥沙试样的效果. 试验结果表明:大豆粉质量浓度为40 g/L时,大豆脲酶的提取效率最优;培养基溶液pH=8时,细菌和大豆脲酶的活性最好;生物酶和胶结液的体积比为1∶1时,尿素能够与氯化钙充分反应. 增加胶结液浓度、灌浆次数均能够提高黄河泥沙试样的抗压强度,但两者的影响规律不同,胶结液浓度起主导作用. 当胶结液浓度为1 mol/L、灌浆次数为8次时,EICP、MICP技术固化后试样的抗压强度达到最大,分别为954.65、674.98 kPa. 黄河泥沙试样内部生成的碳酸钙和抗压强度呈线性关系,EICP、MICP技术固化后试样的碳酸钙质量分数最大值分别为24.05%、21.35%. 黄河泥沙颗粒表面和颗粒之间的孔隙中均有方解石型碳酸钙附着,但其质量分数在试样内部自上而下逐渐降低. 宏观、微观的角度分析结果均表明,EICP技术相比MICP技术更加适合固化黄河泥沙.


关键词: 黄河泥沙,  微生物诱导碳酸钙沉积(MICP),  酶诱导碳酸钙沉积(EICP),  抗压强度,  碳酸钙 
Fig.1 Grain gradation curve of Yellow River silt
Fig.2 Soybean urease solution
Fig.3 Soybean urease activity test
Fig.4 Bacterial solution with good activity
Fig.5 Prepared Yellow River silt samples
Fig.6 Grouting process of Yellow River silt samples
试验编号 处理方式 cc/(mol·L?1 Dr/%
N=2 N=4 N=6 N=8
TU-1 TU-2 TU-3 TU-4 EICP 0.25 40
TU-5 TU-6 TU-7 TU-8 0.50
TU-9 TU-10 TU-11 TU-12 0.75
TU-13 TU-14 TU-15 TU-16 1.00
TB-1 TB-2 TB-3 TB-4 MICP 0.25 40
TB-5 TB-6 TB-7 TB-8 0.50
TB-9 TB-10 TB-11 TB-12 0.75
TB-13 TB-14 TB-15 TB-16 1.00
Tab.1 Test scheme for solidification of Yellow River silt
Fig.7 Pickling and water washing process of solidified Yellow River silt
Fig.8 Variation curves of soybean urease activity
Fig.9 Effect of pH on biological enzyme activity
Fig.10 Yellow River silt samples solidified by two technologies
Fig.11 Variation of compressive strength with binder concentration for samples treated with two technologies at different grouting times
Fig.12 Variation of compressive strength with grouting times for samples treated with two technologies at different binder concentrations
Fig.13 Three-dimensional compressive strength diagram of Yellow River silt sample under two solidification methods
Fig.14 Stress-strain curve of Yellow River silt sample
Fig.15 Damage of Yellow River silt samples
Fig.16 Three-dimensional mass fraction of calcium carbonate in samples solidified by EICP
Fig.17 Mass fraction of calcium carbonate in samples under two solidification methods
Fig.18 Relationship between mass fraction of calcium carbonate and compressive strength in samples solidified by ECIP
Fig.19 SEM image of Yellow River silt sample
[1]   赵然杭, 华丽丽, 刘恒洋, 等 黄河泥沙用于高速公路路基填筑的可行性研究[J]. 人民黄河, 2021, 43 (2): 122- 126
ZHAO Ran-hang, HUA Li-li, LIU Heng-yang, et al Feasibility study on Yellow River sediment used in subgrade filling of expressway[J]. Yellow River, 2021, 43 (2): 122- 126
doi: 10.3969/j.issn.1000-1379.2021.02.025
[2]   江恩慧, 曹永涛, 董其华, 等 黄河泥沙资源利用的长远效应[J]. 人民黄河, 2015, 37 (2): 1- 5
JIANG En-hui, CAO Yong-tao, DONG Qi-hua, et al Long-term effects of the Yellow River sediment resources utilization[J]. Yellow River, 2015, 37 (2): 1- 5
doi: 10.3969/j.issn.1000-1379.2015.02.001
[3]   岳瑜素, 汪自力, 谢志刚 黄河泥沙资源转型利用产业化相关政策探讨[J]. 中国水利, 2016, (18): 49- 50
YUE Yu-su, WANG Zi-li, XIE Zhi-gang Industrialization policies for utilization of sediment resources of Yellow River[J]. China Water Resources, 2016, (18): 49- 50
doi: 10.3969/j.issn.1000-1123.2016.18.019
[4]   WANG Y, CAO T, SHAO J, et al Experimental study on static characteristics of the Yellow River silt under (triaxial) consolidated undrained conditions[J]. Marine Georesources and Geotechnology, 2022, 41 (3): 285- 294
[5]   王钰轲, 李俊豪, 邵景干, 等 不同影响因素下路用黄河泥沙动剪切模量和阻尼比试验及理论模型研究[J]. 工程科学学报, 2023, 45 (3): 509- 519
WANG Yu-ke, LI Jun-hao, SHAO Jing-gan, et al Experimental investigation and theoretical models on dynamic shear moduli and damping rations for Yellow River sediment under different influence factors[J]. Chinese Journal of Engineering, 2023, 45 (3): 509- 519
[6]   WANG Y, CAO T, GAO Y, et al Experimental study on liquefaction characteristics of saturated Yellow River silt under cycles loading[J]. Soil Dynamics and Earthquake Engineering, 2022, 163: 107457
doi: 10.1016/j.soildyn.2022.107457
[7]   刘俊霞, 张磊, 杨久俊, 等 磷酸对黄河泥沙石灰土的激活效果及作用机理[J]. 建筑材料学报, 2013, 16 (5): 898- 902
LIU Jun-xia, ZHANG Lei, YANG Jiu-jun, et al Activation effect and mechanism of phosphoric acid on Yellow River sediment limes soil[J]. Journal of Building Materials, 2013, 16 (5): 898- 902
doi: 10.3969/j.issn.1007-9629.2013.05.028
[8]   刘汉龙, 肖鹏, 肖杨, 等 微生物岩土技术及其应用研究新进展[J]. 土木与环境工程学报(中英文), 2019, 41 (1): 1- 14
LIU Han-long, XIAO Peng, XIAO Yang, et al State-of-the-art review of biogeotechnology and its engineering applications[J]. Journal of Civil Environmental Engineering, 2019, 41 (1): 1- 14
[9]   MORTENSEN B M, DEJONG J T. Strength and stiffness of MICP treated sand subjected to various stress paths [C]// Geo-Frontiers. Dallas: [s.n.], 2011: 4012-4020.
[10]   HAMDAN N, KAVAZANJIAN E Enzyme-induced carbonate mineral precipitation for fugitive dust control[J]. Géotechnique, 2016, 66 (7): 546- 555
[11]   HARKES M P, VAN PAASSEN L A, BOOSTER J L, et al Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement[J]. Ecological Engineering, 2010, 36 (2): 112- 117
doi: 10.1016/j.ecoleng.2009.01.004
[12]   PUTRA H, YASUHARA H, KIONSHITA N, et al Effect of magnesium as substitute material in enzyme-mediated calcite precipitation for soil-improvement technique[J]. Frontiers in Bioengineering and Biotechnology, 2016, 4: 37
[13]   PARK S S, CHOI S G, NAM I H Effect of plant-induced calcite precipitation on the strength of sand[J]. Journal of Materials in Civil Engineering, 2014, 26 (8): 06014017
doi: 10.1061/(ASCE)MT.1943-5533.0001029
[14]   DEJONG J T, MORTENSEN B M, MARTINEZ B C, et al Bio-mediated soil improvement[J]. Ecological Engineering, 2008, 36 (2): 197- 210
[15]   DE MUYNCK W, DE BELIE N, VERSTRAETE W Microbial carbonate precipitation in construction materials: a review[J]. Ecological Engineering, 2010, 36 (2): 118- 136
doi: 10.1016/j.ecoleng.2009.02.006
[16]   WHIFFIN V S. Microbial CaCO3 precipitation for the production of biocement [D]. Perth: Murdoch University, 2004.
[17]   SIDDIQUE R, NANDA V, KUNAL, et al Influence of bacteria on compressive strength and permeation properties of concrete made with cement baghouse filter dust[J]. Construction and Building Materials, 2016, 106: 461- 469
doi: 10.1016/j.conbuildmat.2015.12.112
[18]   SHARMA A, RAMKRISHNAN R Study on effect of microbial induced calcite precipitates on strength of fine grained soils[J]. Perspectives in Science, 2016, 8: 198- 202
doi: 10.1016/j.pisc.2016.03.017
[19]   CHOI S, WANG K, CHU J Properties of biocemented, fiber reinforced sand[J]. Construction and Building Materials, 2016, 120: 623- 629
doi: 10.1016/j.conbuildmat.2016.05.124
[20]   BALAM N H, MOSTOFINEJAD D, EFTEKHAR M Use of carbonate precipitating bacteria to reduce water absorption of aggregates[J]. Construction and Building Materials, 2017, 141: 565- 577
doi: 10.1016/j.conbuildmat.2017.03.042
[21]   CHU J, IVANOV V, NAEIMI M, et al Optimization of calcium-based bioclogging and biocementation of sand[J]. Acta Geotechnica, 2014, 9: 277- 285
doi: 10.1007/s11440-013-0278-8
[22]   TERZIS D, LALOUI L 3-D micro-architecture and mechanical response of soil cemented via microbial-induced calcite precipitation[J]. Scientific Reports, 2018, 8: 1416
doi: 10.1038/s41598-018-19895-w
[23]   CHENG L, SHAHIN M A, MUJAH D Influence of key environmental conditions on microbially induced cementation for soil stabilization[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2017, 143 (1): 04016083
doi: 10.1061/(ASCE)GT.1943-5606.0001586
[24]   FENG K, MONTOYA B M Influence of confinement and cementation level on the behavior of microbial-induced calcite precipitated sands under monotonic drained loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142 (1): 04015057
doi: 10.1061/(ASCE)GT.1943-5606.0001379
[25]   KHODADADI T H, KAVAZANJIAN E, VAN PAASSEN L, et al. Bio-grout materials: a review [C]// Grouting 2017. Honolulu: [s.n.], 2017: 1-12.
[26]   WANG Y, WANG G, ZHONG Y, et al Comparison of different treatment methods on macro-micro characteristics of Yellow River silt solidified by MICP technology[J]. Marine Georesources and Geotechnology, 2022, 41 (4): 425- 435
[27]   WHIFFIN V S, VAN PAASSEN L A, HARKES M P Microbial carbonate precipitation as a soil improvement technique[J]. Geomicrobiology Journal, 2007, 24 (5): 417- 423
doi: 10.1080/01490450701436505
[28]   CHENG L, CORD-RUWISCH R In situ soil cementation with ureolytic bacteria by surface percolation[J]. Ecological Engineering, 2012, 42: 64- 72
doi: 10.1016/j.ecoleng.2012.01.013
[29]   DILRUKSHI N, WATANABE J, KAWASAKI S Sand cementation test using plant-derived urease and calcium phosphate compound[J]. Materials Transactions, 2015, 56 (9): 1565- 1572
doi: 10.2320/matertrans.M-M2015818
[30]   ALMAJED A A. Enzyme induced carbonate precipitation (EICP) for soil improvement [D]. Phoenix: Arizona State University, 2017.
[31]   HAMDAN N, KAVAZANJIAN E, O’DONNELL S. Carbonate cementation via plant derived urease [C]// Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering. Paris: [s.n.], 2013: 2489–2492.
[32]   原华, 刘康, 原耀楠, 等 大豆脲酶诱导碳酸钙沉淀的多因素影响分析[J]. 人工晶体学报, 2021, 50 (2): 375- 380
YUAN Hua, LIU Kang, YUAN Yan-nan, et al Affecting analysis of multi-factors on soybean urease-induced calcium carbonate precipitation[J]. Journal of Synthetic Crystals, 2021, 50 (2): 375- 380
doi: 10.3969/j.issn.1000-985X.2021.02.022
[33]   吴林玉, 缪林昌, 孙潇昊, 等 植物源脲酶诱导碳酸钙固化沙土试验研究[J]. 岩土工程学报, 2020, 42 (4): 714- 720
WU Lin-yu, MIAO Lin-chang, SUN Xiao-hao, et al Experimental study on sand solidification using plant-derived urease-induced calcium carbonate precipitation[J]. Chinese Journal of Geotechnical Engineering, 2020, 42 (4): 714- 720
[34]   GAO Y F, MENG H, HE J, et al Field trial on use of soybean crude extract for carbonate precipitation and wind erosion control of sandy soil[J]. Journal of Central South University, 2020, 27: 3320- 3333
doi: 10.1007/s11771-020-4549-x
[35]   CHEN Y, GAO Y, NG C W W, et al Bio-improved hydraulic properties of sand treated by soybean urease induced carbonate precipitation and its application part 1: water retention ability[J]. Transportation Geotechnics, 2021, 27: 100489
doi: 10.1016/j.trgeo.2020.100489
[36]   WANG Y, WANG G, WAN Y, et al Recycling of dredged river silt reinforced by an eco-friendly technology as microbial induced calcium carbonate precipitation (MICP)[J]. Soils and Foundations, 2022, 62 (6): 101216
doi: 10.1016/j.sandf.2022.101216
[37]   KAVAZANJIAN E, HAMDAN N. Enzyme induced carbonate precipitation (EICP) columns for ground improvement [C]// IFCEE 2015. San Antonio: ASCE, 2015: 2252–2261.
[1] Yi-long LI,Zhen GUO,Qiang XU,Yu-jie LI. Experimental research on wet-dry cycle of MICP cemented calcareous sand in seawater environment[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(9): 1740-1749.
[2] Wei TIAN,Fang-fang GAO,Li HE. Variation of mechanical property and meso structure of MWCNTs concrete exposed to high temperature[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(11): 2280-2289.
[3] Pei GE,Wei HUANG,Meng LI. Experimental study on recycled brick aggregate concrete frame model[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 10-19.
[4] Zhi-ming LIU,Jie PENG,Jie LI,En-run SONG. Experimental study on improving effect of microorganism solidifying sand by ultrasonic[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1411-1417.
[5] Yue-han XIE,Chao-sheng TANG,Bo LIU,Qing CHENG,Li-yang YIN,Ning-jun JIANG,Bin SHI. Water stability improvement of clayey soil based on microbial induced calcite precipitation[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1438-1447.
[6] Jian-feng ZHU,Qiu-shui TUO,Wen-ni DENG,Chun-yi RAO,Hao-xu LIU. Model of compressive strength of cured organic soil solidified by magnesium cement complex curing agent[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2168-2174.
[7] LUO Hua, CHEN Zu-yu, GONG Guo-fang, ZHAO Yu, JING Liu-jie, WANG Chao. Advance rate of TBM based on field boring data[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(8): 1566-1574.
[8] TAN Jian-yun, YAO Shan-jing. Preparation and charaterisation of spherical calcium carbonate particles
in the presence of carboxylmethyl cellulose sodium
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(2): 226-231.
[9] GUI Ti, GAO Yu-Feng, ZHANG Qiang, Chen-Guo-Dong, LI Zhen-Shan. Stabilized effectiveness of dredged sludge by quicklime and phosphogypsum[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(10): 1974-1978.