Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2026, Vol. 60 Issue (2): 435-444    DOI: 10.3785/j.issn.1008-973X.2026.02.022
    
Numerical analysis of scale effects in model tests of strain localization failure
Shuaifei SUN1(),Jing WANG1,Xiao MIAO1,Daosheng LING1,2,*()
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2. Center for Hypergravity Experimental and Interdisciplinary Research, Zhejiang University, Hangzhou 310058, China
Download: HTML     PDF(2000KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Hypergravity model tests with homogeneous materials have been widely used to study geomaterial failure induced by strain localization, and the influence of model scaling on the failure process was systematically examined. The cohesive zone model was adopted to characterize the strain localization behavior of geomaterials, and the finite element method was used to analyze the effects of scaling ratio on two typical failure modes—tensile and shear. Results indicate that a size effect exists in hypergravity model tests involving strain-localization failure: compared with the prototype, the fracture energy dissipation ratio and load capacity of geomaterials are overestimated, with a longer fracture propagation path. The fracture-band width and the length of the fracture process zone are governed by the material’s basic properties; therefore, they remain unchanged with model scaling. As a result, the similitude requirements for hypergravity model tests of strain-localization failure with homogeneous materials were not strictly satisfied.



Key wordsscale effect      hypergravity model test      cohesive zone model      finite element      fracture process region      crack propagation path     
Received: 04 February 2025      Published: 03 February 2026
CLC:  TU 43  
Fund:  国家自然科学基金资助项目(51988101).
Corresponding Authors: Daosheng LING     E-mail: 22212014@zju.edu.cn;dsling@zju.edu.cn
Cite this article:

Shuaifei SUN,Jing WANG,Xiao MIAO,Daosheng LING. Numerical analysis of scale effects in model tests of strain localization failure. Journal of ZheJiang University (Engineering Science), 2026, 60(2): 435-444.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2026.02.022     OR     https://www.zjujournals.com/eng/Y2026/V60/I2/435


应变局部化破坏模型试验的尺寸效应数值分析

同质材料超重力模型试验广泛应用于应变局部化引起的岩土体破坏研究,为此进行模型缩尺对岩土体破坏过程的影响分析. 采用黏聚区域模型表征材料的应变局部化特性,基于有限单元法分析模型缩尺比对拉伸和剪切2种典型破坏模式的影响规律. 研究结果表明,应变局部化破坏超重力缩尺模型试验存在尺寸效应,试验结果高估岩土体断裂耗散能占比和承载力,断裂带扩展路径比原型相对更长. 产生尺寸效应的内在原因:由材料基本特性决定的破裂带宽度和断裂过程区长度不随模型缩尺改变,导致采用同质材料的应变局部化破坏超重力模型试验相似率无法严格满足.


关键词: 尺寸效应,  超重力模型试验,  黏聚区域模型,  有限元,  断裂过程区,  裂纹扩展路径 
Fig.1 Schematic diagram of cohesive zone
Fig.2 Cohesive zone model for tensile failure
Fig.3 Cohesive zone model for shear failure
Fig.4 Schematic diagram of direct shear model
Fig.5 Schematic diagram of three-point bending beam model
材料编号Gc/(N·m?1)$ {\sigma }_{\text{p}} $/kPa$ {\delta }_{\text{nc}} $/mm$ {\delta }_{\text{nr}} $/mm
2-Ⅰ43.18112.50.350.768
2-Ⅱ86.36112.50.701.536
2-Ⅲ172.72112.51.403.072
Tab.1 Parameters of cohesive zone model for three-point bending beam model
工况编号nL/mmH/mm材料
2-1-1110002002-Ⅰ
2-1-225001002-Ⅰ
2-1-35200402-Ⅰ
2-1-410100202-Ⅰ
2-1-5110002002-Ⅱ
2-1-625001002-Ⅱ
2-1-75200402-Ⅱ
2-1-810100202-Ⅱ
2-1-9110002002-Ⅲ
2-1-1025001002-Ⅲ
2-1-115200402-Ⅲ
2-1-1210100202-Ⅲ
Tab.2 Test conditions for three-point bending beams
Fig.6 Tensile stress contour map of three-point bending beam during failure process
Fig.7 Force-displacement curves of three-point bending beams under four test conditions
Fig.8 Converted value of load-carrying capacity versus model height for three-point bending beams of different materials
Fig.9 Scale effects on structural strength versus material toughness for three-point bending beams of different materials
Fig.10 Tensile stress contour maps at peak load for three-point bending beams in different test conditions
Fig.11 Schematic diagram of three-point bending beam model with notches
工况编号nL/mmH/mma/mm
2-2-1110000200050.0
2-2-21010002005.0
2-2-3100100200.5
Tab.3 Test conditions for three-point bending beam model with notches
Fig.12 Crack propagation path of three-point bending beam model with notches (2-2-1)
Fig.13 Comparison of crack propagation paths for three-point bending beam model with notches in different test conditions
Fig.14 Converted value of load-carrying capacity versus model height for three-point bending beam model with notches
Fig.15 Direct shear test model
材料编号Gc/(N·mm?1)c/kPa$ {\delta }_{\text{sc}} $/mm$ {\delta }_{\text{sr}} $/mm$ {\varphi }_{\text{p}} $/(°)
3-Ⅰ0.31501436.39
3-Ⅱ0.61502836.39
3-Ⅲ1.215052036.39
Tab.4 Parameters of cohesive zone model for direct shear test
工况编号a/mmb/mmnux/mm材料
3-1-160003000110003-Ⅰ
3-1-23000150025003-Ⅰ
3-1-3120060052003-Ⅰ
3-1-4600300101003-Ⅰ
3-1-530015020503-Ⅰ
3-1-61206050203-Ⅰ
3-1-76030100103-Ⅰ
3-1-81206050203-Ⅱ
3-1-924012020403-Ⅲ
Tab.5 Test conditions for direct shear specimens
Fig.16 Shear stress contour map of direct shear test model during failure process
Fig.17 Load-carrying capacity versus model length for direct shear test model
Fig.18 Proportion of fracture dissipation energy versus model length for direct shear test model
Fig.19 Force-displacement curve for scaled model tests using heterogeneous materials
Fig.20 Shear stress contour maps at peak load for direct shear test models in different test conditions
Fig.21 Schematic diagram of slope model
工况编号L1/cmL2/cmH/cme/cmn
3-2-12000100010002001
3-2-210005002001002
3-2-32001001002010
3-2-410050501020
Tab.6 Test conditions for slope models
Fig.22 Slip surface path of slope model in different test conditions
Fig.23 Converted value of load-carrying capacity versus model height for slope model
[1]   KRAMER S L Performance-based design methodologies for geotechnical earthquake engineering[J]. Bulletin of Earthquake Engineering, 2014, 12 (3): 1049- 1070
doi: 10.1007/s10518-013-9484-x
[2]   陈云敏, 马鹏程, 唐耀 土体的本构模型和超重力物理模拟[J]. 力学学报, 2020, 52 (4): 901- 915
CHEN Yunmin, MA Pengcheng, TANG Yao Constitutive models and hypergravity physical simulation of soils[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52 (4): 901- 915
doi: 10.6052/0459-1879-20-059
[3]   蒋明镜 现代土力学研究的新视野: 宏微观土力学[J]. 岩土工程学报, 2019, 41 (2): 195- 254
JIANG Mingjing New paradigm for modern soil mechanics: geomechanics from micro to macro[J]. Chinese Journal of Geotechnical Engineering, 2019, 41 (2): 195- 254
[4]   凌道盛, 李奖, 王文军, 等 人工制备土的结构性及其对应变局部化的影响[J]. 浙江大学学报: 工学版, 2019, 53 (9): 1689- 1696
LING Daosheng, LI Jiang, WANG Wenjun, et al Structure of artificial soils and its influence on strain localization[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (9): 1689- 1696
doi: 10.3785/j.issn.1008-973X.2019.09.007
[5]   ROSCOE K H The influence of strains in soil mechanics[J]. Géotechnique, 1970, 20 (2): 129- 170
[6]   RATTEZ H, SHI Y, SAC-MORANE A, et al Effect of grain size distribution on the shear band thickness evolution in sand[J]. Géotechnique, 2022, 72 (4): 350- 363
doi: 10.1680/jgeot.20.p.120
[7]   WANG Z Y, WANG P, YIN Z Y, et al Micromechanical investigation of the particle size effect on the shear strength of uncrushable granular materials[J]. Acta Geotechnica, 2022, 17 (10): 4277- 4296
doi: 10.1007/s11440-022-01501-z
[8]   BUI T Q, HU X A review of phase-field models, fundamentals and their applications to composite laminates[J]. Engineering Fracture Mechanics, 2021, 248: 107705
doi: 10.1016/j.engfracmech.2021.107705
[9]   WANG L, SU H, ZHOU K A phase-field model for mixed-mode cohesive fracture in fiber-reinforced composites[J]. Computer Methods in Applied Mechanics and Engineering, 2024, 421: 116753
doi: 10.1016/j.cma.2024.116753
[10]   周鑫, 于佳佳, 吴文杰, 等 基于非局部理论的Hoek-Brown软化塑性模型[J]. 防灾减灾工程学报, 2025, 45 (1): 13- 20
ZHOU Xin, YU Jiajia, WU Wenjie, et al Hoek-brown softening plasticity model based on nonlocal theory[J]. Journal of Disaster Prevention and Mitigation Engineering, 2025, 45 (1): 13- 20
doi: 10.13409/j.cnki.jdpme.20241104002
[11]   姚仰平, 武孝天, 崔文杰 基于岩土材料临界状态理论的有限元非局部软化算法: 以CSUH模型为例[J]. 岩石力学与工程学报, 2023, 42 (7): 1759- 1766
YAO Yangping, WU Xiaotian, CUI Wenjie A finite element nonlocal strain-softening algorithm based on the critical state theory for geomaterials: a case study with csuh model[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42 (7): 1759- 1766
doi: 10.13722/j.cnki.jrme.2022.1124
[12]   CASTELLI M, ALLODI A, SCAVIA C A numerical method for the study of shear band propagation in soft rocks[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2009, 33 (13): 1561- 1587
doi: 10.1002/nag.778
[13]   PALMER A C, RICE J R The growth of slip surfaces in the progressive failure of over-consolidated clay[J]. Proceedings of the Royal Series A, 1973, 332: 527- 548
doi: 10.1098/rspa.1973.0040
[14]   喻葭临. 土中剪切带扩展机理研究和扩展过程模拟 [D]. 北京: 清华大学, 2009: 1–142.
YU Jialin. Mechanism investigation and numerical simulation of evolution of shear band in soil [D]. Beijing: Tsinghua University, 2009: 1–142.
[15]   程靳, 赵树山. 断裂力学 [M]. 北京: 科学出版社, 2006: 9–24.
[16]   FLÁDR J, BÍLÝ P Specimen size effect on compressive and flexural strength of high-strength fibre-reinforced concrete containing coarse aggregate[J]. Composites Part B: Engineering, 2018, 138: 77- 86
doi: 10.1016/j.compositesb.2017.11.032
[17]   VU C C, WEISS J, PLÉ O, et al The potential impact of size effects on compressive strength for the estimation of the Young’s modulus of concrete[J]. Materials and Structures, 2021, 54 (5): 196
doi: 10.1617/s11527-021-01795-7
[18]   BAREITHER C A, BENSON C H, EDIL T B Comparison of shear strength of sand backfills measured in small-scale and large-scale direct shear tests[J]. Canadian Geotechnical Journal, 2008, 45 (9): 1224- 1236
doi: 10.1139/T08-058
[19]   WU P K, MATSUSHIMA K, TATSUOKA F Effects of specimen size and some other factors on the strength and deformation of granular soil in direct shear tests[J]. Geotechnical Testing Journal, 2008, 31 (1): 45- 64
doi: 10.1520/GTJ100773
[20]   CANTOR D, OVALLE C Sample size effects on the critical state shear strength of granular materials with varied gradation and the role of column-like local structures[J]. Géotechnique, 2025, 75 (1): 29- 40
doi: 10.1680/jgeot.23.00032
[21]   NING F, LIU J, ZOU D, et al Super-large-scale triaxial tests to study the effects of particle size on the monotonic stress–strain response of rockfill materials[J]. Acta Geotechnica, 2025, 20 (4): 1847- 1858
doi: 10.1007/s11440-024-02471-0
[22]   ZERAATI-SHAMSABADI M, SADREKARIMI A A DEM study on the effects of specimen and particle sizes on direct simple shear tests[J]. Granular Matter, 2025, 27 (2): 36
doi: 10.1007/s10035-025-01513-y
[23]   JIN J, JIN Q, LI M, et al Analysis of large-scale in situ shear tests of sandy gravel with cobbles[J]. International Journal of Civil Engineering, 2024, 22 (11): 2031- 2040
doi: 10.1007/s40999-024-00969-y
[24]   蒋明杰, 吉恩跃, 王天成, 等 粗粒土抗剪强度的缩尺效应规律试验研究[J]. 岩土工程学报, 2023, 45 (4): 855- 861
JIANG Mingjie, JI Enyue, WANG Tiancheng, et al Experimental study on laws of scale effects of shear strength of coarse-grained soils[J]. Chinese Journal of Geotechnical Engineering, 2023, 45 (4): 855- 861
[25]   TIJSSENS M G A, VAN DER GIESSEN E, SLUYS L J Modeling of crazing using a cohesive surface methodology[J]. Mechanics of Materials, 2000, 32 (1): 19- 35
doi: 10.1016/S0167-6636(99)00044-7
[26]   凌道盛, 涂福彬, 卜令方 基于黏聚区域模型的边坡渐进破坏过程强化有限元分析[J]. 岩土工程学报, 2012, 34 (8): 1387- 1393
LING Daosheng, TU Fubin, BU Lingfang Enhanced finite element analysis of progressive failure of slopes based on cohesive zone model[J]. Chinese Journal of Geotechnical Engineering, 2012, 34 (8): 1387- 1393
[27]   石天翔, 张昕, 王洋洋, 等 基于强度理论的内聚力模型的有限元实现及应用[J]. 浙江大学学报: 工学版, 2023, 57 (3): 573- 582
SHI Tianxiang, ZHANG Xin, WANG Yangyang, et al Finite element implementation and application of strength theory based cohesive zone model[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (3): 573- 582
doi: 10.3785/j.issn.1008-973X.2023.03.015
[28]   CUSATIS G, SCHAUFFERT E A Cohesive crack analysis of size effect[J]. Engineering Fracture Mechanics, 2009, 76 (14): 2163- 2173
doi: 10.1016/j.engfracmech.2009.06.008
[29]   HU C, WANG L, LING D, et al Experimental and numerical investigation on the tensile fracture of compacted clay[J]. Computer Modeling in Engineering and Sciences, 2020, 123 (1): 283- 307
doi: 10.32604/cmes.2020.07842
[30]   凌道盛, 徐泽龙, 蔡武军, 等 压实黏土梁弯曲开裂性状试验研究[J]. 岩土工程学报, 2015, 37 (7): 1165- 1172
LING Daosheng, XU Zelong, CAI Wujun, et al Experimental study on characteristics of bending cracks of compacted soil beams[J]. Chinese Journal of Geotechnical Engineering, 2015, 37 (7): 1165- 1172
[31]   黄煜镔, 钱觉时, 周小平 基于强度尺寸效应的准脆性材料脆性指标研究[J]. 工程力学, 2006, 23 (1): 38- 42
HUANG Yubin, QIAN Jueshi, ZHOU Xiaoping Brittleness index of quasibrittle material based on size effect of strength[J]. Engineering Mechanics, 2006, 23 (1): 38- 42
doi: 10.3969/j.issn.1000-4750.2006.01.008
[32]   HU C, YANG Q, LING D, et al Numerical simulations of arbitrary evolving cracks in geotechnical structures using the nonlinear augmented finite element method (N-AFEM)[J]. Mechanics of Materials, 2021, 156: 103814
doi: 10.1016/j.mechmat.2021.103814
[33]   凌道盛, 韩超, 陈云敏, 等 土结接触面黏聚区域模型及渐进累积破坏分析[J]. 岩土工程学报, 2011, 33 (9): 1405- 1411
LING Daosheng, HAN Chao, CHEN Yunmin, et al Interfacial cohesive zone model and progressive failure of soil-structure interface[J]. Chinese Journal of Geotechnical Engineering, 2011, 33 (9): 1405- 1411
[1] Xiaoqiang HOU,Jixian REN,Ruidong LI,Baosheng HOU,Yanjun HOU,Chaoyang WU,Jiale ZHENG. Calculation method of frame-soil-anchor scale synergy effect based on freeze-thaw evolution process[J]. Journal of ZheJiang University (Engineering Science), 2026, 60(2): 425-434.
[2] Yahua ZHENG,Hongwei LIU,Song FENG. Numerical parametric study of percolation through capillary barrier cover with zipper-shape interface[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(4): 730-740.
[3] Guohua XING,Yongjian LU,Pengyong MIAO,Sijin CHEN. Optimal design method of temporary broadcasting tower structure based on improved genetic algorithm[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(3): 469-479.
[4] Zhongjie ZHANG,Hechen ZHOU,Xiaoqiang GU,Jiahe CHEN,Hang WU. Deformation analysis and parameter determination of hardening soil model with small strain of an ultra-deep subway excavation in Tianjin[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(12): 2593-2603.
[5] Yang WU,Lei XIAO,Weiyan WANG,Jinxin XU,Yuan DU,Boxin YANG,Qi AN. Finite element calculation method of contact stress between elevator safety gear brake block and guide rail[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(1): 109-119.
[6] Xingbiao ZHANG,Tao WANG,Sen YAO,Huawen YE,Lu WANG,Lunhua BAI. Dynamic response of cable fracture of long span road-rail cable-stayed suspension bridge[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(9): 1874-1885.
[7] Xican CUI,Lingkai ZHANG,Jianxiang WANG. Influence of scale effect on mechanical properties and constitutive model of gravel materials[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(6): 1198-1208.
[8] Yifei LUO,Bin HU,Xin ZHAO,Zefeng WEN. Rolling contact and wear characteristics simulation analysis of scaled wheel-ring rail[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(6): 1275-1284.
[9] Mi ZHOU,Zhao FENG,Pengli ZHANG,Wei QIN. Shaking table model test of cable-stayed bridge with large flow water pressure pipeline[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(10): 2149-2161.
[10] Jun-chao JIN,Lai-hong JING,Feng-wei YANG,Zhi-yu SONG,Peng-yang SHANG. Improvement of multi-step brittle-plastic approach[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(9): 1706-1717.
[11] Ling-mao WANG,Wei-jian ZHAO. Simulation on pullout behavior of mechanical anchorage reinforcing bars based on refined rib-scale modeling[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(8): 1573-1584.
[12] Xiao-dan CHEN,Ao WU,Rui-jie ZHAO,En-xiang XU. Rotor dynamics of impeller in a magnetic suspension bearingless centrifugal pump[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(8): 1680-1688.
[13] Guo-qing XIE,Mi WANG,De-wen KONG. Seismic performance of steel frame with new high strength silicate wallboard[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(7): 1402-1409.
[14] Jia-wen BAO,Qiang GAO,Lin TANG,Wei-jian ZHAO. Refined finite element analysis of tensile property of grout sleeve splicing of rebars[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(4): 814-823.
[15] Tian-xiang SHI,Xin ZHANG,Yang-yang WANG,Ke-hong ZHENG,Yong-qiang ZHANG. Finite element implementation and application of strength theory based cohesive zone model[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 573-582.