Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2026, Vol. 60 Issue (2): 425-434    DOI: 10.3785/j.issn.1008-973X.2026.02.021
    
Calculation method of frame-soil-anchor scale synergy effect based on freeze-thaw evolution process
Xiaoqiang HOU1,2(),Jixian REN1,Ruidong LI3,Baosheng HOU4,Yanjun HOU2,5,Chaoyang WU1,Jiale ZHENG1
1. School of Civil Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
2. Lanzhou Urban Geological Hazards Field Scientific Observation and Research Station, Ministry of Natural Resources, Lanzhou 730050, China
3. Gansu Institute of Engineering Geology, Lanzhou 730030, China
4. Gansu Nonferrous Engineering Survey and Design Research Institute, Lanzhou 730030, China
5. Geological Environmental Monitoring Institute of Gansu Province, Lanzhou 730050, China
Download: HTML     PDF(3232KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

To address the slope instability problem caused by the crushing of the soil arch in the framed slope and the failure of the anchorage under freeze-thaw cycles, calculation models for the interfaces between the frame beams and the soil arch, as well as between the grouted anchorage segments and the surrounding stratum, were established based on the Mohr–Coulomb theory and the shear displacement method, incorporating the effects of both free and constrained frost heave in the soil. By analyzing the evolutionary processes during the thawing construction period, frost heave period, and secondary thawing period, the frost heave period was identified as the most critical condition for designing the dimensions of frame anchors. The reliability of the theoretical approach was verified through field monitoring and numerical simulation. Case study results show that as the frost heave force increases, the geometric width of the frame beams increases significantly. With increasing frost heave force on the slope surface, the internal force of the anchors rises notably, and the anchorage length extends considerably. Compared with the thawing construction period, the elastic, elastoplastic and residual stages of anchorage all increase in length, with the elastic stage showing the most pronounced growth.



Key wordsslope engineering      scale effect      soil arching effect      frame anchors      frost heave action     
Received: 23 January 2025      Published: 03 February 2026
CLC:  U 417  
Fund:  甘肃省联合科研基金重大项目(24JRRA800);甘肃省交通运输“揭榜挂帅”科技项目(2025-01);甘肃省自然资源科研基金资助项目(2024-06).
Cite this article:

Xiaoqiang HOU,Jixian REN,Ruidong LI,Baosheng HOU,Yanjun HOU,Chaoyang WU,Jiale ZHENG. Calculation method of frame-soil-anchor scale synergy effect based on freeze-thaw evolution process. Journal of ZheJiang University (Engineering Science), 2026, 60(2): 425-434.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2026.02.021     OR     https://www.zjujournals.com/eng/Y2026/V60/I2/425


基于冻融演化过程的框架-土体-锚杆尺度协同效应计算方法

为了解决冻融条件下边坡框架土拱挤碎及锚固力失效引发的边坡失稳问题,基于莫尔-库伦理论与剪切位移法,考虑土体自由与约束冻胀效应的影响,建立框架梁与土拱、锚固段注浆体与地层界面之间的计算模型. 通过分析消融施工期、冻胀期及二次消融期的演化过程,确定以冻胀期为最不利工况的框架锚杆尺度设计原则,利用现场监测与数值模拟验证理论方法的可靠性. 算例分析结果表明:随着冻胀力的增加,框架梁的几何宽度显著增大;随着坡面冻胀力增加,锚杆的内力呈显著增加趋势,锚杆锚固段长度增加明显,其中弹性阶段、弹塑性阶段及残余阶段相对消融施工期均有所增加,弹性段增长最为明显.


关键词: 边坡工程,  尺度效应,  土拱效应,  框架锚杆,  冻胀作用 
Fig.1 Model of soil arching effect
Fig.2 Mechanical analysis of frame under horizontal soil arching
Fig.3 Mechanical analysis of triangular compression zone and failure surface
Fig.4 Force diagram in vertical plane of soil arching
Fig.5 Freeze-thaw evolution process of soil arching effect
Fig.6 Mohr stress circle for soil in limit equilibrium
Fig.7 Structural modelling of interfacial shear stresses and shear displacements at anchorage interface
Fig.8 Anchorage interface and its element
Fig.9 Schematic diagram of constrained frost heave
Fig.10 Schematic calculation of spring instead of frame anchors
Fig.11 Slope site conditions
工况$ \gamma $/(kN·m?3$ c $/kPa$ \varphi $/(°)$ E $/MPa
消融施工期18.22223.219
冻胀期18.84823.660
二次消融期18.12022.822
Tab.1 Slope soil parameters
Fig.12 Frame-soil-anchor model
Fig.13 Geometric width of frame during freeze-thaw process
Fig.14 Change in arch axis under freeze-thaw evolution process
Fig.15 Theoretically calculated value of anchorage length under different working conditions
Fig.16 Stress nephogram of slope retaining with frame anchors during freeze-thaw cycles
Fig.17 Comparison between field-monitored and theoretically derived data for key parameters
[1]   程国栋, 赵林, 李韧, 等 青藏高原多年冻土特征、变化及影响[J]. 科学通报, 2019, 64 (27): 2783- 2795
CHENG Guodong, ZHAO Lin, LI Ren, et al Characteristic, changes and impacts of permafrost on Qinghai-Tibet Plateau[J]. Chinese Science Bulletin, 2019, 64 (27): 2783- 2795
doi: 10.1360/TB-2019-0191
[25]   黄明华. 岩土锚杆拉拔荷载传递分析与FRP智能锚杆监测验证 [D]. 哈尔滨: 哈尔滨工业大学, 2014: 1–139.
HUANG Minghua. Analysis on pullout load transfer mechanism of geotechnical anchor and its valid ating monitor with smart FRP anchor [D]. Harbin: Harbin Institute of Technology, 2014: 1–139.
[2]   叶万军, 杨更社, 彭建兵, 等 冻融循环导致洛川黄土边坡剥落病害产生机制的试验研究[J]. 岩石力学与工程学报, 2012, 31 (1): 199- 205
YE Wanjun, YANG Gengshe, PENG Jianbing, et al Test research on mechanism of freezing and thawing cycle resulting in loess slope spalling hazards in Luochuan[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31 (1): 199- 205
[3]   言志信, 贺香, 郭斌, 等 黄土边坡框架锚杆结构的加固研究[J]. 工程地质学报, 2013, 21 (6): 892- 897
YAN Zhixin, HE Xiang, GUO Bin, et al Study on grillage supporting structure with anchor bars on loess slope reinforcement[J]. Journal of Engineering Geology, 2013, 21 (6): 892- 897
[26]   董建华, 吴晓磊, 师利君, 等 多年冻土区L型挡墙水平冻胀效应计算方法与分析[J]. 岩土力学, 2022, 43 (4): 879- 890
DONG Jianhua, WU Xiaolei, SHI Lijun, et al Calculation method and analysis of horizontal frost heave effect of L-shaped retaining wall in permafrost regions[J]. Rock and Soil Mechanics, 2022, 43 (4): 879- 890
[4]   肖世国, 张腾飞, 曹兴松, 等 软岩高边坡多级框架锚杆设计计算方法[J]. 西南交通大学学报, 2014, 49 (5): 787- 792
XIAO Shiguo, ZHANG Tengfei, CAO Xingsong, et al Design method for multi-frame beams with anchor bolts used to stabilize high soft-rock slope[J]. Journal of Southwest Jiaotong University, 2014, 49 (5): 787- 792
[27]   向田. 季冻区框架锚杆结构支护边坡的稳定性分析 [D]. 西宁: 青海大学, 2022: 1–102.
XIANG Tian. Stability analysis of frame-anchor supporting slope displacement in seasonal frozen zone [D]. Xining: Qinghai University, 2022: 1–102.
[5]   侯小强, 田树涛, 姚正学 框架预应力锚杆高边坡加固机理及优化设计研究[J]. 公路工程, 2015, 40 (4): 81- 84
HOU Xiaoqiang, TIAN Shutao, YAO Zhengxue The reinforcement mechanism of high slope and optimization design research using the frame supporting structure with prestressed anchor[J]. Highway Engineering, 2015, 40 (4): 81- 84
[6]   YE W N, ZHOU Y, YE S H Analysis of deformation and stress characteristics of anchored-frame structures for slope stabilization[J]. Advances in Civil Engineering, 2020, 2020 (1): 8870802
doi: 10.1155/2020/8870802
[7]   LIU S Z Internal force analysis of frame structure considering the soil constraint[J]. Applied Mechanics and Materials, 2015, 777: 38- 41
doi: 10.4028/www.scientific.net/AMM.777.38
[8]   黄明华, 周智, 欧进萍 拉力型锚杆锚固段拉拔受力的非线性全历程分析[J]. 岩石力学与工程学报, 2014, 33 (11): 2190- 2199
HUANG Minghua, ZHOU Zhi, OU Jinping Nonlinear full-range analysis of load transfer in fixed segment of tensile anchors[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33 (11): 2190- 2199
[9]   周炳生, 王保田, 梁传扬, 等 全长黏结式锚杆锚固段荷载传递特性研究[J]. 岩石力学与工程学报, 2017, 36 (Suppl.2): 3774- 3780
ZHOU Bingsheng, WANG Baotian, LIANG Chuanyang, et al Study on load transfer characteristics of wholly grouted bolt[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36 (Suppl.2): 3774- 3780
[10]   张耀升, 王连广, 黄小斌, 等 注浆锚杆界面应力分析及临界锚固长度计算[J]. 东北大学学报: 自然科学版, 2021, 42 (11): 1618- 1624
ZHANG Yaosheng, WANG Lianguang, HUANG Xiaobin, et al Analysis of interface stress of grouting rockbolt and calculation of critical anchorage length[J]. Journal of Northeastern University: Natural Science, 2021, 42 (11): 1618- 1624
[11]   李伟, 李元勋, 李辉, 等 季冻黄土地区框锚边坡预应力锚杆内力计算方法[J]. 土木与环境工程学报(中英文), 2024, 46 (4): 75- 81
LI Wei, LI Yuanxun, LI Hui, et al Calculation and analysis of internal forces of prestressed anchor on frame anchors supporting slope in the seasonal freeze-thaw loess area[J]. Journal of Civil and Environmental Engineering, 2024, 46 (4): 75- 81
[12]   LI L, GONG W, DENG H, et al Distribution pattern of anchorage stress and water sensitivity analysis of red clay[J]. Shock and Vibration, 2020, 2020 (1): 6272576
[13]   FAN J, SHI X, KONG F, et al Calculation method of the effective anchorage length of anchorage structures based on analysis of the ultimate bearing capacity[J]. Geotechnical and Geological Engineering, 2021, 39 (6): 4205- 4212
doi: 10.1007/s10706-021-01751-w
[14]   REN F, WUSHUAI, LIU Y, et al Study on effective anchorage length of anchor cable based on Gauss’s function[J]. IOP Conference Series: Earth and Environmental Science, 2017, 94: 012203
doi: 10.1088/1755-1315/94/1/012203
[15]   YUAN J, YE C, YANG J, et al Experimental and numerical investigation on the deterioration mechanism for grouted rock bolts subjected to freeze–thaw cycles[J]. Bulletin of Engineering Geology and the Environment, 2021, 80 (7): 5563- 5574
doi: 10.1007/s10064-021-02279-2
[16]   高欣亚, 李元勋, 石冬梅, 等 土体冻胀对桩锚支护结构影响试验研究[J]. 地下空间与工程学报, 2021, 17 (3): 692- 697
GAO Xinya, LI Yuanxun, SHI Dongmei, et al Experimental study on the effect of soil frost heave on pile-anchor supporting structure[J]. Chinese Journal of Underground Space and Engineering, 2021, 17 (3): 692- 697
[17]   李成芳, 叶晓明, 李有文 考虑土拱效应预应力锚拉桩土压力研究[J]. 岩土力学, 2011, 32 (6): 1683- 1689
LI Chengfang, YE Xiaoming, LI Youwen Study of earth pressure of prestressed anchor pile considering soil arching[J]. Rock and Soil Mechanics, 2011, 32 (6): 1683- 1689
[18]   刘小丽. 新型桩锚结构设计计算理论研究 [D]. 成都: 西南交通大学, 2003: 1–192.
LIU Xiaoli. Study on designing and computing theory of new pattern pile-anchor structures [D]. Chengdu: Southwest Jiaotong University, 2003: 1–192.
[19]   王威. 基于土拱效应的抗滑桩与土体相互作用研究 [D]. 西安: 长安大学, 2018: 1–76.
WANG Wei. Study on interaction mechanism between anti-slide pile and soil based on soil arch effect [D]. Xi’an: Chang’an University, 2018: 1–76.
[20]   李悦绮, 文军, 刘闻慧, 等 中国西部土壤冻融起止期和冻结深度及其与气温关系的时空分布特征分析[J]. 高原气象, 2023, 42 (3): 657- 670
LI Yueqi, WEN Jun, LIU Wenhui, et al The spatio-temporal distribution of the start-end date and freezing depth and their relationships with air temperature over the western China[J]. Plateau Meteorology, 2023, 42 (3): 657- 670
[21]   邓东平, 彭一航, 柳梦琦, 等 滑面极径-应力-强度耦合关联下非线性破坏特征边坡稳定性极限平衡分析方法[J]. 岩土力学, 2024, 45 (11): 3235- 3258
DENG Dongping, PENG Yihang, LIU Mengqi, et al Limit equilibrium method for analyzing slope stability with nonlinear failure characteristics considering the coupling relationship of polar diameter, stress, and strength of the slip surface[J]. Rock and Soil Mechanics, 2024, 45 (11): 3235- 3258
[22]   董建华, 代涛, 董旭光, 等 框架锚杆锚固寒区边坡的多场耦合分析[J]. 中国公路学报, 2018, 31 (2): 133- 143
DONG Jianhua, DAI Tao, DONG Xuguang, et al Analysis on coupling model of permafrost slope reinforced by frame structure with anchors[J]. China Journal of Highway and Transport, 2018, 31 (2): 133- 143
[23]   赵同彬, 李龙飞, 邢明录, 等 锚杆岩体界面载荷传递规律及锚固长度设计[J]. 山东科技大学学报: 自然科学版, 2024, 43 (2): 1- 12
ZHAO Tongbin, LI Longfei, XING Minglu, et al Load transfer law and anchorage length design at interface between rock bolts and rock mass[J]. Journal of Shandong University of Science and Technology: Natural Science, 2024, 43 (2): 1- 12
[24]   BENMOKRANE B, CHENNOUF A, MITRI H S Laboratory evaluation of cement-based grouts and grouted rock anchors[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1995, 32 (7): 633- 642
[28]   肖旻, 王正中, 刘铨鸿, 等 考虑冻土与结构相互作用的梯形渠道冻胀破坏弹性地基梁模型[J]. 水利学报, 2017, 48 (10): 1229- 1239
XIAO Min, WANG Zhengzhong, LIU Quanhong, et al Elastic foundation beam model of frost heave damage of trapezoidal canal considering interaction between frozen soil and lining stucture[J]. Journal of Hydraulic Engineering, 2017, 48 (10): 1229- 1239
[29]   中华人民共和国交通运输部. 多年冻土地区公路设计与施工技术规范: JTG/T 3331-04—2023 [S]. 北京: 人民交通出版社, 2023.
[30]   马子涵. 冻土-锚固体界面剪切本构模型与锚杆承载特性研究 [D]. 银川: 宁夏大学, 2022: 1–57.
MA Zihan. Study on shear constitutive model of frozen soil-anchor solid interface and bearing capacity characteristics of anchor [D]. Yinchuan: Ningxia University, 2022: 1–57.
[1] Xican CUI,Lingkai ZHANG,Jianxiang WANG. Influence of scale effect on mechanical properties and constitutive model of gravel materials[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(6): 1198-1208.
[2] Wen-bin NIE,hui PEI,Li-wei PANG,Jia-xin LI,yan SHI,Zhi-yi BAO. Spatiotemporal evolution and driving force of regional blue-green space[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(11): 2266-2276.
[3] Chun-xin ZHANG,Hong-hu ZHU,Hao-jie LI,Wei ZHANG,Chun LIU. Material point method simulations of sand deformation and failure around tunnel controlled by support pressure[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1317-1326.
[4] Song-song YANG,Mei WANG,Jian-an DU,Yong GUO,Yan GEN. Influence of construction sequence of pipe jacking by pipe-roof pre-construction method on ground surface settlement[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1706-1714.
[5] KONG Ling-gang, YAO Hong-bo, ZHAN Ling-tong, CHEN Yun-min. Effect of water content on failure modes of evapotranspiration landfill cover[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(5): 847-855.
[6] HAN Yun-dong, YAO Song. Scale effect analysis in aerodynamic performance of high-speed train[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(12): 2383-2391.