|
|
|
| High-precision real-time segmentation network for underground track areas |
Huaping ZHOU1( ),Bin DENG2,Kelei SUN1,Yongqi ZHANG3,4,Tao WU5,Jin WU5 |
1. School of Computer Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China 2. School of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan 232001, China 3. Key Laboratory of Industrial Dust Prevention and Control & Occupational Health and Safety, Ministry of Education, Anhui University of Science and Technology, Huainan 232001, China 4. School of Safety Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China 5. School of Economics and Management, Anhui University of Science and Technology, Huainan 232001, China |
|
|
|
Abstract To address the problems of poor edge segmentation performance and low segmentation accuracy of existing real-time segmentation methods for underground coal mine rail regions under low-light conditions, a high-precision real-time segmentation network (HPRTSNet) was proposed. In the shallow feature extraction stage, a Sobel-based multi-scale edge enhancement module (SMEEM) was designed, in which Sobel operators and multi-scale adaptive average pooling were employed to capture rail edge features, thereby enhancing edge representation of rail regions. In the deep feature extraction stage, a dual-domain fusion enhancement module (DFEM) was introduced to fuse spatial and frequency-domain information, effectively improving the understanding of the complex underground backgrounds. In addition, a receptive-field hybrid atrous spatial pyramid pooling (RHASPP) module was constructed to expand the receptive field and enhance rail feature representation. To further optimize model performance, a hybrid segmentation loss function was adopted. Experimental results on a self-built mine-track segmentation dataset demonstrated that, compared with existing real-time segmentation algorithms, HPRTSNet achieved superior performance in both segmentation accuracy and real-time efficiency.
|
|
Received: 22 January 2025
Published: 03 February 2026
|
|
|
| Fund: 安徽高校自然科学研究项目(2024AH040065). |
井下轨道区域高精度实时分割网络
针对现有实时分割方法在低光照环境下对煤矿井下轨道区域边缘分割效果差、分割精度低的问题,提出高精度实时分割网络(HPRTSNet). 在浅层特征提取部分,设计基于Sobel算子的多尺度边缘增强模块(SMEEM),通过Sobel算子和多尺度自适应平均池化捕获轨道边缘特征,提升轨道区域的边缘表达能力. 在深层特征提取部分,提出双域融合增强模块(DFEM)融合时频域信息,有效增强对井下复杂背景的理解;构建感受野混合空洞空间金字塔池化(RHASPP)模块,扩大感受野并改善轨道特征表达. 为了优化模型性能,提出混合分割损失函数. 在自建的矿井轨道分割数据集上的实验结果表明,与现有的实时分割算法相比,HPRTSNet在分割精度与实时性方面的性能更优.
关键词:
实时分割,
矿井轨道,
无人驾驶电机车,
时域,
频域
|
|
| [1] |
童佳乐. 基于改进实例分割的煤矿电机车障碍物检测技术研究 [D]. 淮南: 安徽理工大学, 2023: 1–102. TONG Jiale. Research on obstacle detection technology of coal mine electric locomotive based on improved instance segmentation [D]. Huainan: Anhui University of Science and Technology, 2023: 1–102.
|
|
|
| [2] |
杨豚, 郭永存, 王爽, 等 煤矿井下无人驾驶轨道电机车障碍物识别[J]. 浙江大学学报: 工学版, 2024, 58 (1): 29- 39 YANG Tun, GUO Yongcun, WANG Shuang, et al Obstacle recognition of unmanned rail electric locomotive in underground coal mine[J]. Journal of Zhejiang University: Engineering Science, 2024, 58 (1): 29- 39
|
|
|
| [3] |
卫星, 刘邵凡, 杨国强, 等 基于改进双边分割网络的井下轨道检测算法[J]. 计算机应用研究, 2020, 37 (Suppl.1): 348- 350 WEI Xing, LIU Shaofan, YANG Guoqiang, et al An underground track detection algorithm based on improved bilateral segmentation network[J]. Application Research of Computers, 2020, 37 (Suppl.1): 348- 350
|
|
|
| [4] |
周华平, 郑锐 基于改进BiSeNet的煤矿井下轨道检测算法[J]. 湖北民族大学学报: 自然科学版, 2021, 39 (4): 398- 403 ZHOU Huaping, ZHENG Rui Underground rail detection algorithm based on improved BiSeNet[J]. Journal of Hubei MinZu University: Natural Sciences Edition, 2021, 39 (4): 398- 403
doi: 10.13501/j.cnki.42-1908/n.2021.12.007
|
|
|
| [5] |
TONG J, WANG S, GUO Y, et al Obstacle detection method of underground electric locomotive rail based on instance segmentation[J]. Transportation Research Record: Journal of the Transportation Research Board, 2024, 2678 (6): 708- 723
doi: 10.1177/03611981231198842
|
|
|
| [6] |
PIRASTEH S, VARSHOSAZ M, BADRLOO S, et al Developing an expansion-based obstacle detection using panoptic segmentation[J]. Journal of Field Robotics, 2024, 41 (5): 1245- 1264
|
|
|
| [7] |
YANG T, GUO Y, LI D, et al Vision-Based obstacle detection in dangerous region of coal mine driverless rail electric locomotives[J]. Measurement, 2025, 239: 115514
doi: 10.1016/j.measurement.2024.115514
|
|
|
| [8] |
马天, 石妍, 石炜璐, 等 基于非对称编解码结构的井下轨道异物分割方法[J]. 光电子·激光, 2026, 37 (1): 10- 20 MA Tian, SHI Yan, SHI Weilu, et al Foreign object segmentation method of underground track based on asymmetric codec structure[J]. Journal of Optoelectronics · Laser, 2026, 37 (1): 10- 20
doi: 10.16136/j.joel.2026.01.0453
|
|
|
| [9] |
POUDEL R P K, LIWICKI S, CIPOLLA R. Fast-SCNN: fast semantic segmentation network [EB/OL]. (2019–02–12)[2025–01–11]. https://arxiv.org/pdf/1902.04502.
|
|
|
| [10] |
LI H, XIONG P, FAN H, et al. DFANet: deep feature aggregation for real-time semantic segmentation [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2020: 9514–9523.
|
|
|
| [11] |
WATANABE S, HORI T, KARITA S, et al. ESPnet: end-to-end speech processing toolkit [C]// Proceedings of the Interspeech 2018. [S.l.]: ISCA, 2018: 2207–2211.
|
|
|
| [12] |
YU C, WANG J, PENG C, et al. BiSeNet: bilateral segmentation network for real-time semantic segmentation [C]// Computer Vision – ECCV 2018. [S.l.]: Springer, 2018: 334–349.
|
|
|
| [13] |
FAN M, LAI S, HUANG J, et al. Rethinking BiSeNet for real-time semantic segmentation [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 9711–9720.
|
|
|
| [14] |
LEE J, KIM D, PONCE J, et al. SFNet: learning object-aware semantic correspondence [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2020: 2273–2282.
|
|
|
| [15] |
PENG J, LIU Y, TANG S, et al. PP-LiteSeg: a superior real-time semantic segmentation model [EB/OL]. (2022–04–06)[2025–01–11]. https://arxiv.org/pdf/2204.02681.
|
|
|
| [16] |
WANG J, GOU C, WU Q, et al. RTFormer: efficient design for real-time semantic segmentation with transformer [EB/OL]. (2022–10–13)[ 2025–01–11]. https://arxiv.org/pdf/2210.07124.
|
|
|
| [17] |
WANG A, CHEN H, LIU L, et al. YOLOv10: real-time end-to-end object detection [EB/OL]. (2024–10–30)[2025–01–11]. https://arxiv.org/pdf/2405.14458.
|
|
|
| [18] |
RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation [C]// Medical Image Computing and Computer-Assisted Intervention. [S.l.]: Springer, 2015: 234–241.
|
|
|
| [19] |
ZHAO H, SHI J, QI X, et al. Pyramid scene parsing network [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 6230–6239.
|
|
|
| [20] |
WANG J, SUN K, CHENG T, et al Deep high-resolution representation learning for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43 (10): 3349- 3364
doi: 10.1109/TPAMI.2020.2983686
|
|
|
| [21] |
CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation [C]// Computer Vision – ECCV 2018. [S.l.]: Springer, 2018: 833–851.
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|