Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (11): 2138-2148    DOI: 10.3785/j.issn.1008-973X.2020.11.009
    
Remote sensing image change detection method based on deep neural networks
Chang WANG1,2(),Yong-sheng ZHANG1,*(),Xu WANG3,Ying YU1
1. School of Geospatial Information, PLA Strategic Support Force Information Engineering University, Zhengzhou 450001, China
2. School of Civil Engineering, University of Science and Technology Liaoning, Anshan 114051, China
3. Surveying and Mapping Engineering Institute, Liaoning Vocational College of Ecological Engineering, Shenyang 110101, China
Download: HTML     PDF(2468KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A remote sensing image change detection method based on deep learning was proposed to obtain reliable training samples and improve the accuracy of remote sensing image change detection. Firstly, texture features (gray co-occurrence matrix method) are selected by structural similarity method (SSIM), and the multitemporal remote sensing image difference image (DI) and textural feature DI obtained by change vector analysis (CVA) are fused to construct the final DI, then the difference images are denoised by the constructed variational denoising model. Secondly, the frequency domain significance method is used to obtain the DI saliency map, and the coarse change detection map obtained by selecting a threshold for the DI saliency map is pre-classified (change, unchanged and undetermined) by the fuzzy c-means (FCM) clustering algorithm. Finally, the neighborhood features of the changed pixels and unchanged pixels extracted from remote sensing images are introduced into the deep neural network model for training, and the trained deep neural network model is used to detect the changes in multitemporal remote sensing image, then the final change detection map is obtained. Experiment on three real remote sensing image data sets shows that the change detection accuracy of the proposed method is higher than that of other comparison methods.



Key wordsfrequency domain significance method      change vector analysis      grey level co-occurrence matrix      deep neural network      different image     
Received: 18 September 2019      Published: 15 December 2020
CLC:  TP 75  
Corresponding Authors: Yong-sheng ZHANG     E-mail: wangchang324@163.com;yszhang2001@vip.163.com
Cite this article:

Chang WANG,Yong-sheng ZHANG,Xu WANG,Ying YU. Remote sensing image change detection method based on deep neural networks. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2138-2148.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.11.009     OR     http://www.zjujournals.com/eng/Y2020/V54/I11/2138


基于深度学习的遥感影像变化检测方法

为了获得可靠的训练样本及提高遥感影像变化检测的精度,提出基于深度学习的遥感影像变化检测方法. 采用结构相似性方法(SSIM)选取纹理特征(灰度共生矩阵法),通过融合变化向量分析(CVA)方法获取不同时相遥感影像差异图(DI)及纹理特征差异图获得差异影像,并采用构造的变分去噪模型对差异影像进行去噪. 利用频域显著性方法获取去噪差异影像的显著性图,通过模糊c-均值(FCM)算法对粗变化检测图(对显著性图选取阈值获得的)进行预分类(变化类、未变化类及未确定类). 将从遥感影像上提取的变化像素和未变化像素的邻域特征引入深度神经网络模型进行训练,并利用训练好的深度神经网络模型对差异影像进行变化检测,得到最终的变化检测图. 对3组遥感影像数据集进行变化检测实验,结果表明本研究方法的变化检测精度高于其他比较方法.


关键词: 频域显著性方法,  变化向量分析,  灰度共生矩阵,  深度神经网络,  差异影像 
Fig.1 Characteristic depth neural network
Fig.2 Flow chart of change detection method based on deep neural network
Fig.3 Experimental remote image data sets
Fig.4 DIs of three remote sensing image data sets obtained by proposed DI (no denoising), proposed DI (variational denoising) and CVA method
Fig.5 DI significance graph and coarse change detection graph of three remote sensing image data sets
数据集 方法 FN FP OE PCC KC
Landsat-7 CVA+FDS+FCM+DNNs 6380 241 6621 0.9742 0.8383
本研究方法(无去噪) 1752 1650 3402 0.9867 0.9259
本研究方法(变分去噪) 1686 1654 3340 0.9870 0.9272
Spot5数据集 CVA+FDS+FCM+DNNs 12360 6741 19101 0.9208 0.5761
本研究方法(无去噪) 7114 8023 15137 0.9373 0.6890
本研究方法(变分去噪) 6501 7766 14267 0.9409 0.7052
Ikonos数据集 CVA+FDS+FCM+DNNs 32816 5043 37859 0.9657 0.9075
本研究方法(无去噪) 19048 17875 36932 0.9666 0.9127
本研究方法(变分去噪) 18824 14228 33052 0.9701 0.9222
Tab.1 Statistical results of change detection evaluation indexes of three remote sensing image data sets in experiment 1
Fig.6 Experimental results of three remote sensing image data sets change detection in experiment 1
数据集 去噪方法 FN FP OE PCC KC
Landsat-7 Lee滤波 1532 1861 3393 0.9868 0.9256
Frost滤波 1562 1829 3392 0.9868 0.9257
均值滤波 1514 1834 3348 0.9869 0.9266
变分去噪 1686 1654 3340 0.9870 0.9272
Spot5数据集 Lee滤波 6877 8022 14899 0.9382 0.6928
Frost滤波 7031 7902 14933 0.9381 0.6934
均值滤波 6752 8064 14816 0.9387 0.6942
变分去噪 6501 7766 14267 0.9409 0.7052
Ikonos数据集 Lee滤波 22474 14482 36956 0.9663 0.9128
Frost滤波 23189 14482 37671 0.9659 0.9117
均值滤波 20523 15037 35560 0.9678 0.9164
变分去噪 18824 14228 33052 0.9701 0.9222
Tab.2 Statistical results of change detection and evaluation indicators of three remote sensing image data sets by different denoising methods in proposed method
Fig.7 Change detection results of three experimental remote sensing image data sets by different denoising methods in proposed method
数据集 方法 FN FP OE PCC KC
Landsat-7 CVA+FLICM 1113 3506 4619 0.9824 0.8956
CVA+MRFFCM 1439 4272 5711 0.9782 0.8699
CVA+SVM 1567 6286 7753 0.9704 0.8466
CVA+FDS+FCM+ELM 7983 189 8172 0.9688 0.7952
PCAKM 5103 833 5936 0.9774 0.8611
JFCM+DNNs 346 7658 8004 0.9687 0.7996
本研究方法(变分去噪) 1686 1654 3340 0.9870 0.9272
Spot5数据集 CVA+FLICM 26418 3481 29899 0.8787 0.5257
CVA+MRFFCM 25247 12176 37423 0.8481 0.4582
CVA+SVM 26364 9287 35651 0.8553 0.4649
CVA+FDS+FCM+ELM 32611 1766 34377 0.8605 0.4093
PCAKM 28269 9808 38077 0.8455 0.4211
JFCM+DNNs 9508 8314 17822 0.9261 0.6456
本研究方法(变分去噪) 6501 7766 14267 0.9409 0.7052
Ikonos数据集 CVA+FLICM 40622 27961 68583 0.9386 0.8366
CVA+MRFFCM 39397 42065 81462 0.9270 0.8094
CVA+SVM 42581 31325 73906 0.9338 0.8243
CVA+FDS+FCM+ELM 40950 23812 64762 0.9420 0.8449
PCAKM 48680 45876 94556 0.9153 0.7773
JFCM+DNNs 14724 34830 49554 0.9551 0.8800
本研究方法(变分去噪) 18824 14228 33052 0.9701 0.9222
Tab.3 Statistical results of change detection and evaluation indexes of three remote sensing image data sets in experiment 2
Fig.8 Experimental results of three remote sensing image data sets change detection in experiment 2
[1]   HUSSAIN M, CHEN D, CHENG A Change detection from remotely sensed images: from pixel-based to object-based approaches[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 80 (2): 91- 106
[2]   BOVOLO F, BRUZZONE L A theoretical framework for unsupervised change detection based on change vector analysis in the polar domain[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45 (1): 218- 236
doi: 10.1109/TGRS.2006.885408
[3]   ZHANG M, ZHAO Y Object-oriented and multi-feature hierarchical change detection based on CVA for high-resolution remote sensing imagery[J]. Journal of Remote Sensing, 2018, 22 (1): 119- 131
[4]   FENG W, ZHANG Y. Object-oriented change detection for remote sensing images based on multi-scale fusion [J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(10): 1142-1151.
[5]   LI L, SHU N, WANG K Change detection method for remote sensing images based on multi-features fusion[J]. Acta Geodaetica et Cartogrphica Sinica, 2014, 43 (9): 945- 953
[6]   CELIK T Unsupervised change detection in satellite images using principal component analysis and k-means clustering[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6 (4): 772- 776
doi: 10.1109/LGRS.2009.2025059
[7]   MISHRA N S, GHOSH S, GHOSH A Fuzzy clustering algorithms incorporating local information for change detection in remotely sensed images[J]. Applied Soft Computing, 2012, 12 (8): 2683- 2692
doi: 10.1016/j.asoc.2012.03.060
[8]   STELIOS K, VASSILIOS C A robust fuzzy local information C-means clustering algorithm[J]. IEEE Transactions on Image Processing, 2010, 19 (5): 1328- 1337
doi: 10.1109/TIP.2010.2040763
[9]   GONG M, ZHOU Z, MA J Change detection in synthetic aperture radar images based on image fusion and fuzzy clustering[J]. IEEE Transactions on Image Processing, 2012, 21 (4): 2141- 2151
doi: 10.1109/TIP.2011.2170702
[10]   GAO F, DONG J, LI B. Change detection from synthetic aperture radar images based on neighborhood-based ratio and extreme learning machine[J]. Journal of Applied Remote Sensing, 2016, 10(4): 1-14.
[11]   TAN K, JIN X, PLAZA A Automatic change detection in high-resolution remote sensing images by using a multiple classifier system and spectral-spatial features[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9 (8): 3339- 3451
[12]   GONG M, ZHAO J, LIU J Change detection in synthetic aperture radar images based on deep neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27 (1): 125- 138
doi: 10.1109/TNNLS.2015.2435783
[13]   ZHANG X, CHEN X, LI F Change detection method for high resolution remote sensing images using deep learining[J]. Acta Geodaetica et Cartogrphica Sinica, 2017, 46 (8): 999- 1008
[14]   王昶, 王旭, 纪松 采用变分法的遥感影像条带噪声去除[J]. 西安交通大学学报, 2019, 53 (3): 143- 149
WANG Chang, WANG Xu, JI Song Strip noise removal of remote images by variation[J]. Journal of Xi'an Jiaotong University, 2019, 53 (3): 143- 149
[1] Jia-hui XU,Jing-chang WANG,Ling CHEN,Yong WU. Surface water quality prediction model based on graph neural network[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 601-607.
[2] Yi-zhe MAO,Guo-fang GONG,Xing-hai ZHOU,Fei WANG. Identification of TBM surrounding rock based on Markov process and deep neural network[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 448-454.
[3] Shi-da CHEN,Qiang LIU,Liang HAN. Gradient sparsification compression approach to reducing communication in distributed training[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 386-394.
[4] Wei-qi CHEN,Jing-chang WANG,Ling CHEN,Yong-qin YANG,Yong WU. Prediction model of multi-factor aware mobile terminal replacement based on deep neural network[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 109-115.
[5] Jin-sheng JIANG,Hao-ran REN,Han-ye LI. Seismic data processing based on convolutional autoencoder[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 978-984.
[6] ZHAO Liao-ying, CHEN Xiao-fen, LI Xiao-run. Hyperspectral change detection based on change vector analysis and spectral unmixing[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(10): 1912-1919.