Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2026, Vol. 60 Issue (2): 322-331    DOI: 10.3785/j.issn.1008-973X.2026.02.010
    
Stereo visual SLAM algorithm for fusing point-line-plane features in low texture environments
Ze WANG1(),Lei RAO1,*(),Guangyu FAN1,Niansheng CHEN1,Songlin CHENG1,Dingyu YANG2,Chuqiao JIANG1
1. School of Electronic Information Engineering, Shanghai Dianji University, Shanghai 201306, China
2. State Key Laboratory of Blockchain and Data Security, Zhejiang University, Hangzhou 310058, China
Download: HTML     PDF(2028KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

To address the issues of low positioning accuracy and significant trajectory drift errors in ORB-SLAM2 based on point features under low-texture scenes, a stereo visual SLAM algorithm integrating point, line, and plane features was proposed. An improved EDLines line feature extraction algorithm was designed and introduced into ORB-SLAM2. By employing short-line suppression and similar-line merging strategies, computational time was reduced while enhancing the quality of line feature extraction. A plane features extraction method based on intersecting lines was proposed. Geometric constraints derived from extracted plane features were used to optimize pose estimation, and reprojection errors were reduced. A joint optimization method for point, line, and plane features was introduced, integrating geometric relationships across multiple features to mitigate cumulative errors from single-feature reliance. The proposed algorithm’s effectiveness was validated on KITTI, EuRoC, and UMA-VI datasets. Experimental results demonstrate that compared to ORB-SLAM2, point-line feature-based SLAM, and point-plane feature-based SLAM algorithms, the proposed method achieves superior positioning accuracy and robustness.



Key wordslow-texture environment      visual SLAM      line features      plane features      joint optimization     
Received: 15 February 2025      Published: 03 February 2026
CLC:  TP 242  
Fund:  国家自然科学基金资助项目(61702320);上海市晨光计划(15CG62).
Corresponding Authors: Lei RAO     E-mail: 949795713@qq.com;raol@sdju.edu.cn
Cite this article:

Ze WANG,Lei RAO,Guangyu FAN,Niansheng CHEN,Songlin CHENG,Dingyu YANG,Chuqiao JIANG. Stereo visual SLAM algorithm for fusing point-line-plane features in low texture environments. Journal of ZheJiang University (Engineering Science), 2026, 60(2): 322-331.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2026.02.010     OR     https://www.zjujournals.com/eng/Y2026/V60/I2/322


低纹理环境下融合点线面特征的双目视觉SLAM算法

针对机器人在低纹理场景下基于点特征的ORB-SLAM2存在定位精度低、轨迹漂移误差较大的问题,提出融合点线面特征的双目视觉SLAM算法. 在ORB-SLAM2中设计并引入改进的EDLines线特征提取算法,通过短线抑制和相似直线合并策略,降低计算时间并提高线特征提取的质量. 提出基于相交直线的平面特征提取方法,基于所提取面特征的几何约束优化位姿估计,减少重投影误差. 提出点线面特征的联合优化方法,融合多种特征的几何关系,减少由单一特征带来的误差累积. 在KITTI、EuRoC和UMA-VI数据集下测试所提算法的有效性. 实验结果表明,相较于ORB-SLAM2、点线特征SLAM以及点面特征SLAM算法,所提算法在定位精度与鲁棒性方面更优.


关键词: 低纹理环境,  视觉SLAM,  线特征,  面特征,  联合优化 
Fig.1 Framework of stereo visual SLAM algorithm for fusing point-line-plane features
Fig.2 Merging of similar line segments
Fig.3 Performance comparison of line feature extraction between two algorithms
Fig.4 Matching of line segments and endpoints
Fig.5 Plane features extraction
场景nf
线
走廊199285
大厅305326
楼梯2123210
Tab.1 Number of point, line and plane features across different scenes
Fig.6 Features extraction
序列RMSE/m
ORB-SLAM2Line-SLAMPL-SLAMRS-SLAM本研究
004.9583.9034.5653.7543.795
016.2109.0788.81610.5745.704
029.5529.8879.9469.7288.052
030.2610.2430.2550.6540.271
040.1720.1750.1920.1990.232
051.9571.9111.8562.0561.800
062.6952.4282.5532.1521.927
071.5771.4691.4281.3091.109
083.1373.1633.0893.6252.788
092.9012.8652.8753.2002.373
100.9890.9540.8181.0730.795
平均值3.1283.2793.3083.3952.622
Tab.2 Comparison of translation root-mean-square error for different visual SLAM algorithms on KITTI dataset
Fig.7 Pose-trajectory comparison of different visual SLAM algorithms on two KITTI-dataset sequences
序列RMSE/m
ORB-SLAM2Line-SLAMPL-SLAMRS-SLAM本研究
MH_01_easy0.03610.03790.04540.03650.0354
MH_02_easy0.03850.04000.03620.03490.0378
MH_03_medium0.03710.04050.04170.03700.0348
MH_04_difficult0.05370.04800.05250.09180.0628
MH_05_difficult0.11880.09610.10680.04570.0451
V1_01_easy0.08740.08700.09100.08610.0858
V1_02_medium0.08180.13970.23740.06980.0647
V1_03_difficult0.19230.16930.19200.18510.1596
V2_01_easy0.08520.06860.06830.06770.0607
V2_02_medium0.09450.08900.07340.08240.0727
平均值0.08250.11760.12950.07370.0659
Tab.3 Comparison of translation root-mean-square error for different visual SLAM algorithms on EuRoC dataset
Fig.8 Pose-trajectory comparison of different visual SLAM algorithms on sequence V2_01_easy
Fig.9 Feature map of sequence V1_02_medium
序列RMSE/m
ORB-SLAM2Line-SLAMPL-SLAM本研究
corridor-eng1.46181.22271.18520.9728
class-csc10.33350.30440.31880.2565
class-csc20.45510.41810.43380.3812
parking-csc10.72130.45100.52150.3815
hall1-rev-eng0.10450.08240.08750.0639
hall1-eng0.03280.03450.0269
third-floor-eng0.05100.05260.0486
平均值0.43940.36600.37620.3044
Tab.4 Comparison of translation root-mean-square error for different visual SLAM algorithms on UMA-VI dataset
Fig.10 Pose-trajectory comparison of different visual SLAM algorithms on sequence corridor-eng
[1]   CADENA C, CARLONE L, CARRILO H, et al Past, present, and future of simultaneous localization and mapping: toward the robust-perception age[J]. IEEE Transactions on Robotics, 2016, 32 (6): 1309- 1332
doi: 10.1109/TRO.2016.2624754
[2]   TAKETOMI T, UCHIYAMA H, IKEDA S Visual SLAM algorithms: a survey from 2010 to 2016[J]. IPSJ Transactions on Computer Vision and Applications, 2017, 9: 16
doi: 10.1186/s41074-017-0027-2
[3]   ENGEL J, KOLTUN V, CREMERS D Direct sparse odometry[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40 (3): 611- 625
doi: 10.1109/TPAMI.2017.2658577
[4]   MUR-ARTAL R, MONTIEL J, TARDÓS J ORB-SLAM: a versatile and accurate monocular SLAM system[J]. IEEE Transactions on Robotics, 2015, 31 (5): 1147- 1163
doi: 10.1109/TRO.2015.2463671
[5]   MUR-ARTAL R, TARDÓS J ORB-SLAM2: an open-source SLAM system for monocular, stereo, and RGB-D cameras[J]. IEEE Transactions on Robotics, 2017, 33 (5): 1255- 1262
doi: 10.1109/TRO.2017.2705103
[6]   CAMPOS C, ELVIRA R, RODRÍGUEZ J, et al ORB-SLAM3: an accurate open-source library for visual, visual–inertial, and multimap SLAM[J]. IEEE Transactions on Robotics, 2021, 37 (6): 1874- 1890
doi: 10.1109/TRO.2021.3075644
[7]   WEI H, TANG F, XU Z, et al A point-line VIO system with novel feature hybrids and with novel line predicting-matching[J]. IEEE Robotics and Automation Letters, 2021, 6 (4): 8681- 8688
doi: 10.1109/LRA.2021.3113987
[8]   KAESS M. Simultaneous localization and mapping with infinite planes [C]// Proceedings of the 2015 IEEE International Conference on Robotics and Automation. Seattle: IEEE, 2015: 4605–4611.
[9]   PUMAROLA A, VAKHITOV A, AGUDO A, et al. PL-SLAM: real-time monocular visual SLAM with points and lines [C]// Proceedings of the 2017 IEEE International Conference on Robotics and Automation. Singapore: IEEE, 2017: 4503–4508.
[10]   GIOI R, JAKUBOWICZ J, MOREL J, et al LSD: a fast line segment detector with a false detection control[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32 (4): 722- 732
doi: 10.1109/TPAMI.2008.300
[11]   QIAN K, ZHAO W, LI K, et al Visual SLAM with BoPLW pairs using egocentric stereo camera for wearable-assisted substation inspection[J]. IEEE Sensors Journal, 2020, 20 (3): 1630- 1641
doi: 10.1109/JSEN.2019.2947275
[12]   TREVOR A J B, GEDIKLI S, RUSU R B, et al Efficient organized point cloud segmentation with connected components[J]. Semantic Perception Mapping Exploration, 2013, 10 (6): 251- 257
[13]   MA L, KERL C, STÜCKLER J, et al. CPA-SLAM: consistent plane-model alignment for direct RGB-D SLAM [C]// Proceedings of the 2016 IEEE International Conference on Robotics and Automation. Stockholm: IEEE, 2016: 1285–1291.
[14]   ZHOU L, KOPPEL D, KAESS M Lidar SLAM with plane adjustment for indoor environment[J]. IEEE Robotics and Automation Letters, 2021, 6 (4): 7073- 7080
doi: 10.1109/LRA.2021.3092274
[15]   ZHANG X, WANG W, QI X, et al. Stereo plane SLAM based on intersecting lines [C]// Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems. Prague: IEEE, 2021: 6566–6572.
[16]   黄宁生, 陈靖, 缪远东 基于平面约束的RGB-D SLAM系统[J]. 计算机应用研究, 2020, 37 (8): 2526- 2530
HUANG Ningsheng, CHEN Jing, MIAO Yuandong RGB-D SLAM system based on plane constraint[J]. Application Research of Computers, 2020, 37 (8): 2526- 2530
doi: 10.19734/j.issn.1001-3695.2019.03.0100
[17]   ZHANG X, WANG W, QI X, et al Point-plane SLAM using supposed planes for indoor environments[J]. Sensors, 2019, 19 (17): 3795
doi: 10.3390/s19173795
[18]   WANG H, WEI H, XU Z, et al RSS: robust stereo SLAM with novel extraction and full exploitation of plane features[J]. IEEE Robotics and Automation Letters, 2024, 9 (6): 5158- 5165
doi: 10.1109/LRA.2024.3388854
[19]   YAN J, ZHENG Y, YANG J, et al PLPF-VSLAM: an indoor visual SLAM with adaptive fusion of point-line-plane features[J]. Journal of Field Robotics, 2024, 41 (1): 50- 67
doi: 10.1002/rob.22242
[20]   SHU F, WANG J, PAGANI A, et al. Structure PLP-SLAM: efficient sparse mapping and localization using point, line and plane for monocular, RGB-D and stereo cameras [C]// Proceedings of the 2023 IEEE International Conference on Robotics and Automation. London: IEEE, 2023: 2105–2112.
[21]   AKINLAR C, TOPAL C EDLines: a real-time line segment detector with a false detection control[J]. Pattern Recognition Letters, 2011, 32 (13): 1633- 1642
doi: 10.1016/j.patrec.2011.06.001
[22]   ZHANG L, KOCH R An efficient and robust line segment matching approach based on LBD descriptor and pairwise geometric consistency[J]. Journal of Visual Communication and Image Representation, 2013, 24 (7): 794- 805
doi: 10.1016/j.jvcir.2013.05.006
[23]   BURRI M, NIKOLIC J, GOHL P, et al The EuRoC micro aerial vehicle datasets[J]. International Journal of Robotics Research, 2016, 35 (10): 1157- 1163
doi: 10.1177/0278364915620033
[24]   GEIGER A, LENZ P, STILLER C, et al Vision meets robotics: the KITTI dataset[J]. International Journal of Robotics Research, 2013, 32 (11): 1231- 1237
doi: 10.1177/0278364913491297
[1] Kai LIN,Xin-wu LIANG,Ji-yuan CAI. Dynamic RGB-D SLAM algorithm based on reprojection depth difference cumulative map and static probability[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1062-1070.
[2] Xin MA,Xin-wu LIANG,Ji-yuan CAI. Fast visual SLAM method based on point and line features[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 402-409.
[3] CHEN Xun, ZHANG Chao-Yang, LUO Hai-Yan. Joint optimization of power control, channel assignment and scheduling in wireless mesh network[J]. Journal of ZheJiang University (Engineering Science), 2009, 43(8): 1406-1411.