|
|
Monitoring for cold extrusion cutting tools in nuclear environment based on PCA and auto associative neural network |
Pei YUAN1,2( ),Junxia JIANG1,*( ),Fei MA2,Jiefeng JIN2,Jianliang LAI2 |
1. School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China 2. Hangzhou Jingye Intelligent Technology Co. Ltd, Hangzhou 310051, China |
|
|
Abstract A tool condition monitoring model combined with time-frequency domain statistics, principal component analysis (PCA) and auto associative neural network (AANN) was proposed based on motor torque signals of external motor rotation shaft and feed shaft, aiming at problems such as limited deployment of sensors in high radiation environment, noise interference of transmission chain and poor consistency of cold extrusion cutting tools. Firstly, time domain statistical features and wavelet packet energy features were extracted to form the original training set based on the torque waveform of rotary motor and feed motor. Then, the original training set was used to train the AANN model. Finally, the PCA was used to reconstruct the original training set to optimize the local structural parameters of the AANN model, and a PCA-AANN tool condition monitoring model was formed. The proposed PCA-AANN model was compared with the existing AANN model based on the torque data collected from the cutting test of the actual prototype, and experimental results showed that the introduction of PCA improved the robustness of AANN model, reduced the false alarm rate of tool operating state, and realized the accurate monitoring of tool status under radioactive environment. The proposed method provided a reference for the condition monitoring of similar transmission equipment under radioactive environment.
|
Received: 18 March 2024
Published: 10 March 2025
|
|
Fund: “尖兵领雁+X”研发攻关计划资助项目(2024C04056(CSJ)). |
Corresponding Authors:
Junxia JIANG
E-mail: yuanp@boomy.cn;junxia.jiang@126.com
|
基于PCA和自联想神经网络的核环境冷挤压切割刀具状态监测
在高放射性环境中,传感器部署受限,传动链噪声干扰,冷挤压切割刀具一致性差. 为此提出基于外置电机旋转轴与进给轴电机扭矩信号的时频域统计、主成分分析(PCA)与自联想神经网络(AANN)相结合的刀具状态监测模型. 基于旋转电机及进给电机扭矩波形提取时域统计特征及小波包能量特征形成原始训练集,利用原始训练集初步训练AANN模型,使用PCA重构原始训练集用于优化AANN模型局部结构参数,形成PCA-AANN刀具状态监测模型. 基于实际样机的切割试验采集扭矩数据,对提出的PCA-AANN和现有AANN模型进行分析对比,结果表明PCA的引入有助于提高AANN模型鲁棒性,能有效降低刀具工作状态误报率,实现放射性环境下刀具状态的准确监测. 所提方法为放射性环境中类似长传动链设备的状态监测提供了借鉴.
关键词:
放射性,
刀具状态监测,
时域统计,
小波包分解,
主成分分析,
自联想神经网络
|
|
[1] |
杜洪铭, 靳松, 刘天险, 等 放射性固体废物压缩减容技术研究[J]. 原子能科学技术, 2015, 49 (8): 1515- 1520 DU Hongming, JIN Song, LIU Tianxian, et al Study on compaction of radioactive solid waste[J]. Atomic Energy Science and Technology, 2015, 49 (8): 1515- 1520
|
|
|
[2] |
张存平, 吕海雷, 蒋磊, 等 放射性固体废物回取与整备处理示范设施[J]. 中国原子能科学研究院年报, 2011, (1): 66- 66 ZHANG Cunping, LV Hailei, JIANG Lei, et al Demonstration facility for recycling and reconditioning of radioactive solid waste[J]. Annual Report of China Institute of Atomic Energy, 2011, (1): 66- 66
|
|
|
[3] |
黄来喜, 何文新, 陈德淦 大亚湾核电站放射性固体废物管理[J]. 辐射防护, 2004, 24 (3): 211- 226 HUANG Laixi, HE Wenxin, CHEN Degan Management of radioactive solid waste in Daya bay nuclear power plant[J]. Radiation Protection, 2004, 24 (3): 211- 226
|
|
|
[4] |
程训, 余建波 基于机器视觉的加工刀具磨损监测方法[J]. 浙江大学学报: 工学版, 2021, 55 (5): 896- 904 CHENG Xun, YU Jianbo Machining tool wear monitoring method based on machine vision[J]. Journal of Zhejiang University: Engineering and Technology, 2021, 55 (5): 896- 904
|
|
|
[5] |
田颖, 王文豪 一种基于主轴功率的刀具状态监测方法[J]. 天津大学学报, 2021, 54 (11): 1179- 1186 TIAN Ying, WANG Wenhao A tool condition monitoring method based on spindle power[J]. Journal of Tianjin University, 2021, 54 (11): 1179- 1186
|
|
|
[6] |
黄颖旭, 李波, 田锡天 基于主轴电流的铣削力间接监测方法[J]. 计算机集成制造系统, 2022, 28 (1): 93- 101 HUANG Yingxu, LI Bo, TIAN Xitian Indirect monitoring method of milling force based on spindle current[J]. Computer Integrated Manufacturing Systems, 2022, 28 (1): 93- 101
|
|
|
[7] |
ZHOU C G, YANG B, GUO K, et al Vibration singularity analysis for milling tool condition monitoring[J]. International Journal of Mechanical Sciences, 2020, 166: 105254
doi: 10.1016/j.ijmecsci.2019.105254
|
|
|
[8] |
周兆锋, 洪捐, 黄传锦 基于声发射信号分析的刀具磨损状态在线监测研究[J]. 工具技术, 2022, 56 (12): 51- 55 ZHOU Zhaofeng, HONG Qian, HUANG Chuanjin Research on on-line monitoring of tool wear state based on acoustic emission signal analysis[J]. Tool Technology, 2022, 56 (12): 51- 55
|
|
|
[9] |
聂鹏, 马尧, 郭勇翼, 等 基于IPSO优化LS-SVM的铣削刀具磨损状态监测方法研究[J]. 振动与冲击, 2022, 41 (22): 137- 143 NIE Peng, MA Yao, GUO Yongyi, et al Research on abrasion monitoring method of milling tool based on IPSO optimization LS-SVM[J]. Journal of Vibration and Shock, 2022, 41 (22): 137- 143
|
|
|
[10] |
朱锟鹏, 李刚 基于刀具磨损映射关系的微细铣削力理论建模与试验研究[J]. 机械工程学报, 2021, 57 (19): 246- 259 ZHU Kunpeng, LI Gang Theoretical modeling and experimental study of micro-milling force based on tool wear mapping[J]. Journal of Mechanical Engineering, 2021, 57 (19): 246- 259
doi: 10.3901/JME.2021.19.023
|
|
|
[11] |
HE Z P, SHI T L, XUAN J P , et al. Research on tool wear prediction based on temperature signals and deep learning [J]. Wear , 2021, 478: 203902.
|
|
|
[12] |
王国锋, 李启铭, 秦旭达, 等 支持向量机在刀具磨损多状态监测中的应用[J]. 天津大学学报, 2011, 44 (1): 35- 39 WANG Guofeng, LI Qiming, QIN Xuda, et al Application of support vector machine in multi-state monitoring of tool wear[J]. Journal of Tianjin University, 2011, 44 (1): 35- 39
|
|
|
[13] |
侍相龙, 张屹, 彭明松, 等 基于LDA和支持向量机的微铣刀磨损状态识别研究[J]. 制造业自动化, 2023, 45 (2): 179- 183 SHI Xianglong, ZHANG Yi, PENG Mingsong, et al Research on wear state identification of micro-milling cutter based on LDA and support vector machine[J]. Manufacturing Automation, 2023, 45 (2): 179- 183
doi: 10.3969/j.issn.1009-0134.2023.02.036
|
|
|
[14] |
GOMES M C, BRITO L C, DA SILVA M, et al. Tool wear monitoring in micromilling using support vector machine with vibration and sound sensors [J]. Precision Engineering , 2021, 67: 137–151.
|
|
|
[15] |
杨国葳, 李宏坤, 张明亮, 等 基于一维深度卷积自动编码器的刀具状态监测方法[J]. 振动与冲击, 2021, 40 (21): 223- 233 YANG Guowei, LI Hongkun, ZHANG Mingliang, et al Tool state monitoring method based on one-dimensional deep convolutional autoencoder[J]. Journal of Vibration and Shock, 2021, 40 (21): 223- 233
|
|
|
[16] |
MAREI M, ZAATARI S E, LI W Transfer learning enabled convolutional neural networks for estimating health state of cutting tools[J]. Robotics and Computer-integrated Manufacturing, 2021, 71: 102145
doi: 10.1016/j.rcim.2021.102145
|
|
|
[17] |
汪海晋, 尹宗宇, 柯臻铮, 等 基于一维卷积神经网络的螺旋铣刀具磨损监测[J]. 浙江大学学报: 工学版, 2020, 54 (5): 931- 939 WANG Haijin, YIN Zongyu, KE Zhenzheng, et al Spiral milling tool wear monitoring based on one-dimensional convolutional neural network[J]. Journal of Zhejiang University: Engineering and Technology, 2020, 54 (5): 931- 939
|
|
|
[18] |
ALIUSTAOGLU C, ERTUNC H M, OCAK H Tool wear condition monitoring using a sensor fusion model based on fuzzy inference system[J]. Mechanical Systems and Signal Processing, 2009, 23 (2): 539- 546
doi: 10.1016/j.ymssp.2008.02.010
|
|
|
[19] |
刘学为, 蔡旭林 基于模糊小波极限学习机的刀具磨损状态识别[J]. 机械制造与自动化, 2021, 50 (5): 12- 15 LIU Xuewei, CAI Xulin Tool wear state recognition based on fuzzy wavelet extreme learning machine[J]. Machine Building and Automation, 2021, 50 (5): 12- 15
|
|
|
[20] |
OKOKPUJIE I P, SINEBE J E An overview of the study of ANN-GA, ANN-PSO, ANFIS-GA, ANFIS-PSO and ANFISFCM predictions analysis on tool wear during machining process[J]. Journal Européen des Systèmes Automatisés, 2023, 56 (2): 269- 280
|
|
|
[21] |
张鹏宇, 孟鑫鑫, 林有希 铝合金切削过程刀具磨损预测研究[J]. 机床与液压, 2022, (17): 189- 194 ZHANG Pengyu, MENG Xinxin, LIN Youxi Research on tool wear prediction in aluminum alloy cutting process[J]. Machine Tool and Hydraulics, 2022, (17): 189- 194
|
|
|
[22] |
ZHANG X Y, LIU L L, WAN X, et al Tool wear online monitoring method based on DT and SSAE-PHMM[J]. Journal of Computing and Information Science in Engineering, 2021, 21 (3): 1- 18
|
|
|
[23] |
YAN S C, SUI L, WANG S Q, et al On-line tool wear monitoring under variable milling conditions based on a condition-adaptive hidden semi-Markov model (CAHSMM)[J]. Mechanical Systems and Signal Processing, 2023, 200: 110644
doi: 10.1016/j.ymssp.2023.110644
|
|
|
[24] |
JACOBS K. Independent identically distributed (IID) random variables [M]. Berlin: Springer, 1992.
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|