Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (3): 597-605    DOI: 10.3785/j.issn.1008-973X.2025.03.017
    
Custom design method of ergonomic products based on neighborhood topology reconstruction
Mingyu GAO(),Jinghua XU*(),Shuyou ZHANG,Kang WANG,Jianrong TAN
Design Engineering Institute, Zhejiang University, Hangzhou 310058, China
Download: HTML     PDF(3832KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A custom design method of ergonomic products based on neighborhood topology reconstruction (NTR) was proposed to improve the design efficiency and comfort level of ergonomic products. The 3D reconstruction method was based on the neighborhood topological relation of medical images, the ambiguity of Marching Cubes algorithm was overcame, and the time-consuming problem of Marching Tetrahedrons algorithm was avoided. The original shape of complex curved surface component with personalized customization information was obtained by 3D reconstruction based on medical CT images, which provided data support for the custom design of ergonomic products. A deep residual network was introduced, and the multi-scale features of the layer cross-section were extracted layer by layer by using the neural network. The nonlinear implicit relationship between cost consumption of additive manufacture and multi-scale features was established layer by layer. The materials consumption prediction and cost optimization of the complex conceptual design prototype were realized. According to the original shape of the manifold and deformation algorithm based on the Laplace-Gauss curve, the hand pressing-holding posture was obtained. The scheme of ordinary mouse was evolved according to the posture, and the ergonomic mouse was designed conceptually. The effectiveness of the method was verified by physical experiments. The high surface precision of the prototype product was indicated by the microscopic morphology, and the predicted energy consumption change was similar to the actual energy consumption. The experimental results show that the combination of neighborhood topology reconstruction and deformation algorithm can provide data support and physical reference for the custom design of ergonomic products and improve the comfort level of ergonomic products.



Key wordsneighborhood topology reconstruction      ergonomic product      custom design      deep residual network      stratified additive manufacture      deformation algorithm     
Received: 29 April 2024      Published: 10 March 2025
CLC:  TP 391.7  
Fund:  国家重点研发计划资助项目(2022YFB3303303);浙江大学IDEA2022 创新设计资助项目(188170-11102).
Corresponding Authors: Jinghua XU     E-mail: 3140104348@zju.edu.cn;xujh@zju.edu.cn
Cite this article:

Mingyu GAO,Jinghua XU,Shuyou ZHANG,Kang WANG,Jianrong TAN. Custom design method of ergonomic products based on neighborhood topology reconstruction. Journal of ZheJiang University (Engineering Science), 2025, 59(3): 597-605.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.03.017     OR     https://www.zjujournals.com/eng/Y2025/V59/I3/597


基于邻域拓扑重建的人体工学产品定制设计方法

为了提高人体工学产品的设计效率和舒适度,提出基于邻域拓扑重建(NTR)的人体工学产品定制设计方法. 通过结合医学图像邻域拓扑关系进行三维重建,克服传统移动立方体算法的二义性问题,同时避免移动四面体的高耗时问题. 基于医学CT图像进行三维重建,得到具有个性化定制信息的复杂曲面构件原始形状,为人体工学产品定制设计提供数据支持. 引入深度残差网络,利用神经网络分层提取模型层切面的多尺度特征,分层建立增材制造成本消耗与多尺度特征之间的非线性隐式关系,实现复杂概念设计原型的材料消耗预测与成本优化. 根据流形原始形状和基于Laplace-Gauss曲线的变形算法获取手部按握姿态,根据姿态对普通鼠标进行方案演化,对人体工学鼠标进行概念设计. 通过物理实验观察到的微观形貌表征了原型产品的高精度特征,预测能耗变化与实际能耗相近. 实验结果证明,邻域拓扑重建和变形算法相结合可以为人体工学产品定制设计提供数据支持和实物参考,提高人体工学产品的舒适度.


关键词: 邻域拓扑重建,  人体工学产品,  定制设计,  深度残差网络,  分层增材制造,  变形算法 
Fig.1 Neighborhood cube with ambiguity problem
Fig.2 Split method of neighborhood cube with ambiguity problem
Fig.3 Schematic diagram of transition algorithm
Fig.4 Flow chart of medical image 3D reconstruction method based on neighborhood topology
Fig.5 Model based on neighborhood topology reconstruction and original image
Fig.6 Different models of mouse with complex curved surface
Fig.7 Holding postures with different mouse components
Fig.8 Five-finger machine hand
Fig.9 Motion information of each fingertip
Fig.10 Print model using DLP
Fig.11 Test experiment of mouse holding pressure
Fig.12 Surface microscopic morphology of four areas of ergonomic mouse
Fig.13 Predicted materials consumption and measured materials consumption of printing process
性能指标现有方法本研究方法(NTR方法)
三维重建Lorensen等[12]的移动立方体算法存在二义性问题;
Gueziec等[13]的移动四面体算法重建速度较慢
●在避免二义性问题的基础上,减少医学图像三维重建所需时间,提高三维
重建的效率,如图35所示
三维流形变形Louren?o等[4]通过手动测量尺寸以及人工建模获得
手部模型
●通过三维重建与流形变形方法相结合获得准确人体尺寸数据,如图7所示
●提出柔性抓取空间,使用斜椭球作为凸壳
人体工学评价Harih等[3]仅考虑了静态抓握状态●既考虑了静态握持状态的舒适度,又考虑了动态按握过程的平稳性,
图7~ 9所示
快速原型制造Louren?o等[4]仅展示概念模型●通过DLP设备进行了快速原型制造,通过微观形貌表征原型产品的
高表面精度,如图1012所示
Tab.1 Comparison between proposed method and other methods
[1]   LINDEGÅRD A, GRIMBY-EKMAN A, WAHLSTRÖM J, et al Can biofeedback training in combination with ergonomic information reduce pain among young adult computer users with neck and upper extremity symptoms? A randomized controlled intervention study[J]. Applied Ergonomics, 2024, 114: 104155
doi: 10.1016/j.apergo.2023.104155
[2]   BLEECKER M L, CELIO M A, BARNES S K A medical-ergonomic program for symptomatic keyboard/mouse users[J]. Journal of Occupational and Environmental Medicine, 2011, 53 (5): 562- 568
doi: 10.1097/JOM.0b013e31821719af
[3]   HARIH G, KALC M, VOGRIN M, et al Finite element human hand model: validation and ergonomic considerations[J]. International Journal of Industrial Ergonomics, 2021, 85: 103186
doi: 10.1016/j.ergon.2021.103186
[4]   LOURENÇO M L, PITARMA R A, COELHO D A A design contribution to ergonomic pc mice development[J]. International Journal of Environmental Research and Public Health, 2022, 19 (13): 8126
doi: 10.3390/ijerph19138126
[5]   LI N, JIANG L, YANG D, et al. Development of an anthropomorphic prosthetic hand for man-machine interaction [C]// Intelligent Robotics and Applications . Shanghai: ICIRA, 2010: 38–46.
[6]   MEATTINI R, BENATTI S, SCARCIA U, et al An semg-based human–robot interface for robotic hands using machine learning and synergies[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2018, 8 (7): 1149- 1158
doi: 10.1109/TCPMT.2018.2799987
[7]   CAROPRESE M, ALBENZIO M, MARINO R, et al Behavior, milk yield, and milk composition of machine-and hand-milked Murgese mares[J]. Journal of Dairy Science, 2007, 90 (6): 2773- 2777
doi: 10.3168/jds.2006-603
[8]   ZHANG X, ZHANG T, JIANG Y, et al A novel brain-controlled prosthetic hand method integrating AR-SSVEP augmentation, asynchronous control, and machine vision assistance[J]. Heliyon, 2024, 10 (5): e26521
doi: 10.1016/j.heliyon.2024.e26521
[9]   TUMBLESTON J R, SHIRVANYANTS D, ERMOSHKIN N, et al Continuous liquid interface production of 3D objects[J]. Science, 2015, 347 (6228): 1349- 1352
doi: 10.1126/science.aaa2397
[10]   GUO J, ZHANG X, YAN J, et al Digital light processing bio-scaffolds of hydroxyapatite ceramic foams with multi-level pores using Pickering emulsions as the feedstock[J]. Journal of the European Ceramic Society, 2024, 44 (6): 4272- 4284
doi: 10.1016/j.jeurceramsoc.2024.01.021
[11]   PAREDES C, ROLEČEK J, MIRANDA P Improving the strength of β-TCP scaffolds produced by digital light processing using two-step sintering[J]. Journal of the European Ceramic Society, 2024, 44 (4): 2571- 2580
doi: 10.1016/j.jeurceramsoc.2023.11.028
[12]   LORENSEN W E, CLINE H E. Marching cubes: a high resolution 3D surface construction algorithm [C]// Proceedings of the 14th annual conference on Computer graphics and interactive techniques . New York: ACM, 1987: 163–169.
[13]   GUEZIEC A, HUMMEL R Exploiting triangulated surface extraction using tetrahedral decomposition[J]. IEEE Transactions on Visualization and Computer Graphics, 1995, 1 (4): 328- 342
doi: 10.1109/2945.485620
[14]   KIM S, SOHN D, IM S Construction of polyhedral finite element meshes based upon marching cube algorithm[J]. Advances in Engineering Software, 2019, 128: 98- 112
doi: 10.1016/j.advengsoft.2018.11.014
[15]   CHANG M, OH J W, CHANG D S, et al Interactive marching cubes algorithm for intraoral scanners[J]. The International Journal of Advanced Manufacturing Technology, 2017, 89 (5/8): 2053- 2062
doi: 10.1007/s00170-016-9231-y
[16]   SINGH R, DIGUMARTHY S R, MUSE V V, et al Image quality and lesion detection on deep learning reconstruction and iterative reconstruction of submillisievert chest and abdominal CT[J]. American Journal of Roentgenology, 2020, 214 (3): 566- 573
doi: 10.2214/AJR.19.21809
[17]   JIN Z, ZHANG Z, GU G X Autonomous in-situ correction of fused deposition modeling printers using computer vision and deep learning[J]. Manufacturing Letters, 2019, 22: 11- 15
doi: 10.1016/j.mfglet.2019.09.005
[18]   HE H, YANG Y, PAN Y Machine learning for continuous liquid interface production: Printing speed modelling[J]. Journal of Manufacturing Systems, 2019, 50: 236- 246
doi: 10.1016/j.jmsy.2019.01.004
[19]   XIONG J, ZHANG G Online measurement of bead geometry in GMAW-based additive manufacturing using passive vision[J]. Measurement Science and Technology, 2013, 24 (11): 115103
doi: 10.1088/0957-0233/24/11/115103
[20]   TENG C, ASHBY K, PHAN N, et al The effects of material property assumptions on predicted meltpool shape for laser powder bed fusion based additive manufacturing[J]. Measurement Science and Technology, 2016, 27 (8): 085602
doi: 10.1088/0957-0233/27/8/085602
[21]   PAUL R, ANAND S, GERNER F Effect of thermal deformation on part errors in metal powder based additive manufacturing processes[J]. Journal of Manufacturing Science and Engineering, 2014, 136 (3): 031009
doi: 10.1115/1.4026524
[22]   谭建荣, 高铭宇, 徐敬华, 等 数智化正向设计方法及其在制造装备与过程中的应用[J]. 机械工程学报, 2023, 59 (19): 111- 125
TAN Jianrong, GAO Mingyu, XU Jinghua, et al Digital intelligent forward design method and its application in manufacturing equipment and process[J]. Journal of Mechanical Engineering, 2023, 59 (19): 111- 125
doi: 10.3901/JME.2023.19.111
[23]   XU J, GAO M, ZHAN J, et al Towards support-free design for 3D printing of thin-walled composite based on stratified manufacturability reinforcement[J]. CIRP Journal of Manufacturing Science and Technology, 2022, 38: 457- 472
doi: 10.1016/j.cirpj.2022.05.017
[24]   XU J, WANG K, SHENG H, et al Energy efficiency optimization for ecological 3D printing based on adaptive multi-layer customization[J]. Journal of Cleaner Production, 2020, 245: 118826
doi: 10.1016/j.jclepro.2019.118826
[25]   XU J, GAO M, FENG X, et al Support diminution design for layered manufacturing of manifold surface based on variable orientation tracking[J]. 3D Printing and Additive Manufacturing, 2021, 8 (3): 149- 167
doi: 10.1089/3dp.2020.0203
[1] Jian CHEN,Rong MO,Jian-jie CHU,Deng-kai CHEN,Jing GONG. Construction of social collaboration team in cloud design and manufacturing mode[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(3): 444-454.
[2] HE Xue-jun, WANG Jin, LU Guo-dong, LIU Zhen-yu, CHEN Li, JIN Jing. 3D head portrait sculpture by industrial robot based on triangular mesh slicing and collision detection[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(6): 1104-1110.
[3] HE Xue jun, WANG Jin, LU Guo dong, CHEN Li. Contour-parallel tool path linking method for sections with lake-including islands[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(9): 1654-1661.
[4] WU Yao feng, WANG Wen, LU Ke qing, WEI Yan ding, CHEN Zi chen. Fast ellipse detection based on edge grouping[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(3): 405-411.
[5] SHEN Ming-yu, QIU Le-miao, TAN Jian-rong, WU Xiao-rong. Active push design of product subdivision structure driven by performance requirement[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(2): 287-295.
[6] WANG Shi-yan, YU Hui-min. Primal-dual method for spatiotemporal tracking model with moving background[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(4): 630-637.
[7] SHEN Ye, LI Min-dan, XIA Shun-ren. Learning algorithm with non-balanced data for computer-aided
diagnosis of breast cancer
[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(1): 1-7.
[8] SHEN Ye, LI Min-dan, XIA Shun-ren. Learning algorithm with non-balanced data for computer-aided
diagnosis of breast cancer
[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(1): 1-7.
[9] SUN Liang-feng, ZHANG Shu-you, QIU Le-miao, HU Kun. Product modularization renewable model and regeneration techniques[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(10): 1744-1756.
[10] ZHOU Yi, ZHONG Wei, XIE Jin-fang, TONG Shui-guang. Research of scheme design model for process-formed
mechanical system
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(8): 1526-1533.
[11] ZHAO Jie-yi, TANG Min, TONG Ruo-feng. CUDA based shadow volume algorithm for subdivision surfaces[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(7): 1301-1306.
[12] LIU Xiao-jian, ZHANG Shu-you, ZHANG Jian-xin, ZHANG Jin-mei. Product design change propagation on weak-tie structures[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(6): 1041-1047.
[13] XU Jin, ZHANG Shu-you, FEI Shao-mei. Product remanufacture disassembly planning based on
adaptive particle swarm optimization algorithm
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(10): 1746-1752.
[14] SHEN Wan-qiang, WANG Guo-zhao. A new family of generalized Ball basis and its corresponding curves[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(3): 435-439.
[15] LIU Xiao-jian, ZHANG Shu-you, XU Jing-hua. Design change based on network flow Petri net model[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(1): 37-44.