|
|
Hierarchical spatial embedding BiGRU model for destination prediction |
Xiangyu ZHOU1,2( ),Yizhi LIU1,2,*( ),Yijiang ZHAO1,2,Zhuhua LIAO1,2,Decheng ZHANG1,2 |
1. School of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China 2. Hunan Key Laboratory for Service Computing and Novel Software Technology, Hunan University of Science and Technology, Xiangtan 411201, China |
|
|
Abstract At present, most destination prediction methods that combine spatial embedding and neural networks faced the trade-off between prediction accuracy and time performance, as well as the long-term dependence problem. Therefore, a hierarchical spatial embedding bidirectional gate recurrent unit (HSE-BiGRU) model for destination prediction was proposed. The proposed HSE-BiGRU model adopted a hierarchical architecture consisting of two stages. In the first stage, a coarse-grained grid embedding technique was employed to convert the GPS trajectory data into a grid embedding sequence. An attention-equipped BiGRU network was used to capture the spatiotemporal dependencies within the sequence and predict the destination’s grid region. In the second stage, a quadtree embedding technique was utilized to transform the trajectory data within the predicted grid region into a quadtree embedding sequence. Subsequently, the attention-equipped BiGRU network was applied to focus on critical location nodes within the quadtree embedding sequence, thereby extracting its motion characteristics. Finally, the destination was accurately predicted by integrating the features extracted from both stages. The performance of the proposed method was evaluated on the taxi dataset in Porto, and the experimental results showed that the proposed method was superior to the baseline models, for example CNN, T-CONV, and CNN-LSTM, in terms of prediction accuracy and time performance.
|
Received: 05 June 2024
Published: 30 May 2025
|
|
Fund: 2024年教育部人文社会科学研究规划基金资助项目(24YJAZH237);2023年湖南省重点研发计划资助项目(2023sk2081);湖南省自然科学基金资助项目(2024JJ5163) ;湖南省教育厅科学研究重点资助项目(22A0341). |
Corresponding Authors:
Yizhi LIU
E-mail: z_xy24@sina.cn;yizhi_liu@sina.cn
|
面向目的地预测的层次化空间嵌入BiGRU模型
结合空间嵌入和神经网络目的地的预测方法在预测精度和时间性能之间存在权衡,并且面临长期依赖的问题. 为此,提出面向目的地预测的层次化空间嵌入双向门控循环单元 (HSE-BiGRU) 模型. 该模型采用层次化架构:第1层通过粗粒度网格嵌入技术,将GPS轨迹数据转换为网格嵌入序列,利用带注意力的BiGRU网络捕获网格嵌入序列中的时空依赖关系,预测目的地所在的网格区域;第2层采用四叉树嵌入技术将网格区域内的轨迹数据转换为四叉树嵌入序列,运用带注意力的BiGRU网络聚焦关键位置节点以提取四叉树嵌入序列的运动特征;结合2层提取的特征信息精准预测目的地. 使用波尔图市的出租车数据集进行性能评估,结果表明,所提方法在预测精度和时间性能上均优于CNN、T-CONV、CNN-LSTM等基线模型.
关键词:
目的地预测,
层次化架构,
网格嵌入,
四叉树嵌入,
双向门控循环单元(BiGRU),
注意力机制
|
|
[1] |
WU X, ZHU W, LIU Z, et al A novel vehicle destination prediction model with expandable features using attention mechanism and variational autoencoder[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23 (9): 16548- 16557
|
|
|
[2] |
余丹青, 邬群勇, 姚江涛, 等 融合卷积、注意力和MLP的出租车目的地预测[J]. 计算机工程与应用, 2023, 59 (11): 302- 311 YU Danqing, WU Qunyong, YAO Jiangtao, et al Taxi destination prediction based on convolution, attention and multilayer perceptron[J]. Computer Engineering and Applications, 2023, 59 (11): 302- 311
doi: 10.3778/j.issn.1002-8331.2203-0168
|
|
|
[3] |
江婧, 张怀峰, 皮德常 基于卷积神经网络的移动对象目的地预测[J]. 小型微型计算机系统, 2019, 40 (12): 2519- 2525 JIANG Jing, ZHANG Huaifeng, PI Dechang Destination prediction of moving objects based on convolutional neural networks[J]. Journal of Chinese Computer Systems, 2019, 40 (12): 2519- 2525
doi: 10.3969/j.issn.1000-1220.2019.12.009
|
|
|
[4] |
LV J, SUN Q, LI Q, et al Multi-scale and multi-scope convolutional neural networks for destination prediction of trajectories[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21 (8): 3184- 3195
|
|
|
[5] |
李冰荣, 皮德常, 候梦如 基于CNN和LSTM的移动对象目的地预测[J]. 计算机科学, 2021, 48 (4): 70- 77 LI Bingrong, PI Dechang, HOU Mengru Destination prediction of moving objects based on convolutional neural networks and long-short term memory[J]. Computer Science, 2021, 48 (4): 70- 77
doi: 10.11896/jsjkx.200200024
|
|
|
[6] |
崔淑敏, 张磊, 李允, 等 出租车目的地预测的深度学习方法[J]. 计算机工程与科学, 2020, 42 (1): 185- 190 CUI Shumin, ZHANG Lei, LI Yun, et al A deep learning method for taxi destination prediction[J]. Computer Engineering and Science, 2020, 42 (1): 185- 190
doi: 10.3969/j.issn.1007-130X.2020.01.024
|
|
|
[7] |
SONG D, LI Y, ZHANG M, et al. Taxi destination prediction based on LSTM with tree memory module [C]// 5th International Conference on Computer Information Science and Artificial Intelligence. Chongqing: SPIE, 2023, 12566: 135–140.
|
|
|
[8] |
LIAO C, CHEN C, XIANG C, et al Taxi-passenger’s destination prediction via GPS embedding and attention-based BiLSTM model[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23 (5): 4460- 4473
|
|
|
[9] |
晋广印, 赵旭俊, 龚艺璇 基于长短期记忆网络的移动轨迹目的地预测[J]. 计算机工程与科学, 2024, 46 (3): 525- 534 JIN Guangyin, ZHAO Xujun, GONG Yixuan Moving trajectory destination prediction based on long short-term memory network[J]. Computer Engineering and Science, 2024, 46 (3): 525- 534
doi: 10.3969/j.issn.1007-130X.2024.03.015
|
|
|
[10] |
SPERBER M. Quadtree and Octree [M]// SHEKHAR S, XIONG H, ZHOU X. Encyclopedia of GIS. Cham: Springer, 2017: 1695–1700.
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|